Reinforcing cancer immunotherapy with engineered porous hollow mycobacterium tuberculosis loaded with tumor neoantigens.

IF 10.3 1区 医学 Q1 IMMUNOLOGY
Ming-Hui Chen, Jie Jiang, Hengyu Chen, Ri-Hong Wu, Weijing Xie, Shu-Zhen Dai, Wu-Ping Zheng, Guang-Hong Tan, Feng-Ying Huang
{"title":"Reinforcing cancer immunotherapy with engineered porous hollow mycobacterium tuberculosis loaded with tumor neoantigens.","authors":"Ming-Hui Chen, Jie Jiang, Hengyu Chen, Ri-Hong Wu, Weijing Xie, Shu-Zhen Dai, Wu-Ping Zheng, Guang-Hong Tan, Feng-Ying Huang","doi":"10.1136/jitc-2024-010150","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Enhancing antigen cross-presentation is essential for the development of a tumor neoantigen vaccine. One approach is to stimulate antigen-presenting cells (APCs) to uptake neoantigens. <i>Mycobacterium tuberculosis</i> (MTb) contains pathogen-associated molecular patterns (PAMPs) recognized by APCs and adhesion molecules that facilitate MTb invasion of APCs. Therefore, we suggest using MTb as a carrier to enhance APC phagocytosis of neoantigens, thereby promoting antigen cross-presentation.</p><p><strong>Methods: </strong>The successful preparation of the MTb carrier (phMTb) was confirmed through electron and confocal microscopy. Fluorescence microscopy was used to detect PAMPs and adhesion molecules on phMTb as well as to observe its role in aiding dendritic cells (DCs) in antigen uptake into endosomes or lysosomes. Flow cytometry was used to assess the retention of PAMPs and adhesion molecules on phMTb, investigate antigen uptake by DCs, evaluate their activation and maturation status, examine the presentation of tumor neoantigens, and analyze immune cells in draining lymph nodes and tumor tissues. The efficacy of phMTb vaccine formulations in combination with anti-programmed cell death protein 1 (PD-1) antibody therapy was assessed using the MC38 mouse tumor models. Adverse effects were evaluated through H&E staining of major organs, assessment of reproductive capability and detection of biochemical indices.</p><p><strong>Results: </strong>The engineered porous hollow phMTb carrier successfully encapsulated model tumor neoantigens, with or without the adjuvant CpG. The phMTb retained PAMPs and adhesion molecules on its surface, similar to the parental MTb, thereby enhancing DC uptake of phMTb and its formulations containing tumor neoantigens and CpG. Vaccines formulated with phMTb facilitated DC maturation, activation, cross-presentation of tumor neoantigens, and promoted migration of phMTb-laden DCs to lymph nodes, enhancing effector and memory CD8<sup>+</sup> T lymphocyte function. In murine tumor models, immunization with phMTb-formulated neoantigen vaccines elicited a robust tumor-specific cytotoxic T lymphocyte immune response with minimal adverse effects. Additionally, vaccination with phMTb-formulated neoantigen vaccines effectively reversed the tumor's immune-suppressive microenvironment. Concurrent administration of the PD-1 antibody with the phMTb-formulated neoantigen vaccine exhibited significant synergistic therapeutic effects.</p><p><strong>Conclusions: </strong>The results of our study highlight the potential clinical translation of personalized tumor neoantigen vaccines using the phMTb carrier.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 2","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804190/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Immunotherapy of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jitc-2024-010150","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Enhancing antigen cross-presentation is essential for the development of a tumor neoantigen vaccine. One approach is to stimulate antigen-presenting cells (APCs) to uptake neoantigens. Mycobacterium tuberculosis (MTb) contains pathogen-associated molecular patterns (PAMPs) recognized by APCs and adhesion molecules that facilitate MTb invasion of APCs. Therefore, we suggest using MTb as a carrier to enhance APC phagocytosis of neoantigens, thereby promoting antigen cross-presentation.

Methods: The successful preparation of the MTb carrier (phMTb) was confirmed through electron and confocal microscopy. Fluorescence microscopy was used to detect PAMPs and adhesion molecules on phMTb as well as to observe its role in aiding dendritic cells (DCs) in antigen uptake into endosomes or lysosomes. Flow cytometry was used to assess the retention of PAMPs and adhesion molecules on phMTb, investigate antigen uptake by DCs, evaluate their activation and maturation status, examine the presentation of tumor neoantigens, and analyze immune cells in draining lymph nodes and tumor tissues. The efficacy of phMTb vaccine formulations in combination with anti-programmed cell death protein 1 (PD-1) antibody therapy was assessed using the MC38 mouse tumor models. Adverse effects were evaluated through H&E staining of major organs, assessment of reproductive capability and detection of biochemical indices.

Results: The engineered porous hollow phMTb carrier successfully encapsulated model tumor neoantigens, with or without the adjuvant CpG. The phMTb retained PAMPs and adhesion molecules on its surface, similar to the parental MTb, thereby enhancing DC uptake of phMTb and its formulations containing tumor neoantigens and CpG. Vaccines formulated with phMTb facilitated DC maturation, activation, cross-presentation of tumor neoantigens, and promoted migration of phMTb-laden DCs to lymph nodes, enhancing effector and memory CD8+ T lymphocyte function. In murine tumor models, immunization with phMTb-formulated neoantigen vaccines elicited a robust tumor-specific cytotoxic T lymphocyte immune response with minimal adverse effects. Additionally, vaccination with phMTb-formulated neoantigen vaccines effectively reversed the tumor's immune-suppressive microenvironment. Concurrent administration of the PD-1 antibody with the phMTb-formulated neoantigen vaccine exhibited significant synergistic therapeutic effects.

Conclusions: The results of our study highlight the potential clinical translation of personalized tumor neoantigen vaccines using the phMTb carrier.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal for Immunotherapy of Cancer
Journal for Immunotherapy of Cancer Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
17.70
自引率
4.60%
发文量
522
审稿时长
18 weeks
期刊介绍: The Journal for ImmunoTherapy of Cancer (JITC) is a peer-reviewed publication that promotes scientific exchange and deepens knowledge in the constantly evolving fields of tumor immunology and cancer immunotherapy. With an open access format, JITC encourages widespread access to its findings. The journal covers a wide range of topics, spanning from basic science to translational and clinical research. Key areas of interest include tumor-host interactions, the intricate tumor microenvironment, animal models, the identification of predictive and prognostic immune biomarkers, groundbreaking pharmaceutical and cellular therapies, innovative vaccines, combination immune-based treatments, and the study of immune-related toxicity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信