A localized tracing technique to explore intra-amygdala functional and structural correlates of individual variability in behavioral response.

IF 3.5 3区 医学 Q2 NEUROSCIENCES
Frontiers in Molecular Neuroscience Pub Date : 2025-01-22 eCollection Date: 2025-01-01 DOI:10.3389/fnmol.2025.1347539
Allie Lipshutz, Victoria Saltz, Kristin R Anderson, Alessia Manganaro, Dani Dumitriu
{"title":"A localized tracing technique to explore intra-amygdala functional and structural correlates of individual variability in behavioral response.","authors":"Allie Lipshutz, Victoria Saltz, Kristin R Anderson, Alessia Manganaro, Dani Dumitriu","doi":"10.3389/fnmol.2025.1347539","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The neurobiological basis for individual variability in behavioral responses to stimuli remains poorly understood. Probing the neural substrates that underlie individual variability in stress responses may open the door for preventive approaches that use biological markers to identify at-risk populations. New developments of viral neuronal tracing tools have led to a recent increase in studies on long range circuits and their functional role in stress responses and social behavior. While these studies are necessary to untangle largescale connectivity, most social behaviors are mediated and fine-tuned by local subregional circuitry.</p><p><strong>Methods: </strong>In order to probe this local, interregional connectivity, we present a new combination of a neuronal tracing system with immediate early gene immunohistochemistry for examining structural and functional connectivity within the same animal. Specifically, we combine a retrograde transsynaptic rabies tracing system with cFos colocalization immediately after an acute stressor to elucidate local structural and stress-activated connectivity within the amygdala complex in female and male mice.</p><p><strong>Results and discussion: </strong>We show how specific structural and functional connections can predict individual variability along a spectrum of social approach/avoidance following acute social defeat stress. We demonstrate how our robust method can be used to elucidate structural and functional differences in local connectivity that mediate individual variability in behavioral response.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"18 ","pages":"1347539"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnmol.2025.1347539","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The neurobiological basis for individual variability in behavioral responses to stimuli remains poorly understood. Probing the neural substrates that underlie individual variability in stress responses may open the door for preventive approaches that use biological markers to identify at-risk populations. New developments of viral neuronal tracing tools have led to a recent increase in studies on long range circuits and their functional role in stress responses and social behavior. While these studies are necessary to untangle largescale connectivity, most social behaviors are mediated and fine-tuned by local subregional circuitry.

Methods: In order to probe this local, interregional connectivity, we present a new combination of a neuronal tracing system with immediate early gene immunohistochemistry for examining structural and functional connectivity within the same animal. Specifically, we combine a retrograde transsynaptic rabies tracing system with cFos colocalization immediately after an acute stressor to elucidate local structural and stress-activated connectivity within the amygdala complex in female and male mice.

Results and discussion: We show how specific structural and functional connections can predict individual variability along a spectrum of social approach/avoidance following acute social defeat stress. We demonstrate how our robust method can be used to elucidate structural and functional differences in local connectivity that mediate individual variability in behavioral response.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
2.10%
发文量
669
审稿时长
14 weeks
期刊介绍: Frontiers in Molecular Neuroscience is a first-tier electronic journal devoted to identifying key molecules, as well as their functions and interactions, that underlie the structure, design and function of the brain across all levels. The scope of our journal encompasses synaptic and cellular proteins, coding and non-coding RNA, and molecular mechanisms regulating cellular and dendritic RNA translation. In recent years, a plethora of new cellular and synaptic players have been identified from reduced systems, such as neuronal cultures, but the relevance of these molecules in terms of cellular and synaptic function and plasticity in the living brain and its circuits has not been validated. The effects of spine growth and density observed using gene products identified from in vitro work are frequently not reproduced in vivo. Our journal is particularly interested in studies on genetically engineered model organisms (C. elegans, Drosophila, mouse), in which alterations in key molecules underlying cellular and synaptic function and plasticity produce defined anatomical, physiological and behavioral changes. In the mouse, genetic alterations limited to particular neural circuits (olfactory bulb, motor cortex, cortical layers, hippocampal subfields, cerebellum), preferably regulated in time and on demand, are of special interest, as they sidestep potential compensatory developmental effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信