Comparison and verification of detection accuracy for late deceleration with and without uterine contractions signals using convolutional neural networks.

IF 3.2 3区 医学 Q2 PHYSIOLOGY
Frontiers in Physiology Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI:10.3389/fphys.2025.1525266
Ikumi Sato, Yuta Hirono, Eiri Shima, Hiroto Yamamoto, Kousuke Yoshihara, Chiharu Kai, Akifumi Yoshida, Fumikage Uchida, Naoki Kodama, Satoshi Kasai
{"title":"Comparison and verification of detection accuracy for late deceleration with and without uterine contractions signals using convolutional neural networks.","authors":"Ikumi Sato, Yuta Hirono, Eiri Shima, Hiroto Yamamoto, Kousuke Yoshihara, Chiharu Kai, Akifumi Yoshida, Fumikage Uchida, Naoki Kodama, Satoshi Kasai","doi":"10.3389/fphys.2025.1525266","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cardiotocography (CTG) is used to monitor and evaluate fetal health by recording the fetal heart rate (FHR) and uterine contractions (UC) over time. Among these, the detection of late deceleration (LD), the early marker of fetal mild hypoxemia, is important, and the temporal relationship between FHR and UC is an essential factor in deciphering it. However, there is a problem with UC signals generally tending to have poor signal quality due to defects in installation or obesity in pregnant women. Since obstetricians evaluate potential LD signals only from the FHR signal when the UC signal quality is poor, we hypothesized that LD could be detected by capturing the morphological features of the FHR signal using Artificial Intelligence (AI). Therefore, this study compares models using FHR only (FHR-only model) and FHR with UC (FHR + UC model) constructed using a Convolutional Neural Network (CNN) to examine whether LD could be detected using only the FHR signal.</p><p><strong>Methods: </strong>The data used to construct the CNN model were obtained from the publicly available CTU-UHB database. We used 86 cases with LDs and 440 cases without LDs from the database, confirmed by expert obstetricians.</p><p><strong>Results: </strong>The results showed high accuracy with an area under the curve (AUC) of 0.896 for the FHR-only model and 0.928 for the FHR + UC model. Furthermore, in a validation using 23 cases in which obstetricians judged that the UC signals were poor and the FHR signal had an LD-like morphology, the FHR-only model achieved an AUC of 0.867.</p><p><strong>Conclusion: </strong>This indicates that using only the FHR signal as input to the CNN could detect LDs and potential LDs with high accuracy. These results are expected to improve fetal outcomes by promptly alerting obstetric healthcare providers to signs of nonreassuring fetal status, even when the UC signal quality is poor, and encouraging them to monitor closely and prepare for emergency delivery.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"16 ","pages":"1525266"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798946/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2025.1525266","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Cardiotocography (CTG) is used to monitor and evaluate fetal health by recording the fetal heart rate (FHR) and uterine contractions (UC) over time. Among these, the detection of late deceleration (LD), the early marker of fetal mild hypoxemia, is important, and the temporal relationship between FHR and UC is an essential factor in deciphering it. However, there is a problem with UC signals generally tending to have poor signal quality due to defects in installation or obesity in pregnant women. Since obstetricians evaluate potential LD signals only from the FHR signal when the UC signal quality is poor, we hypothesized that LD could be detected by capturing the morphological features of the FHR signal using Artificial Intelligence (AI). Therefore, this study compares models using FHR only (FHR-only model) and FHR with UC (FHR + UC model) constructed using a Convolutional Neural Network (CNN) to examine whether LD could be detected using only the FHR signal.

Methods: The data used to construct the CNN model were obtained from the publicly available CTU-UHB database. We used 86 cases with LDs and 440 cases without LDs from the database, confirmed by expert obstetricians.

Results: The results showed high accuracy with an area under the curve (AUC) of 0.896 for the FHR-only model and 0.928 for the FHR + UC model. Furthermore, in a validation using 23 cases in which obstetricians judged that the UC signals were poor and the FHR signal had an LD-like morphology, the FHR-only model achieved an AUC of 0.867.

Conclusion: This indicates that using only the FHR signal as input to the CNN could detect LDs and potential LDs with high accuracy. These results are expected to improve fetal outcomes by promptly alerting obstetric healthcare providers to signs of nonreassuring fetal status, even when the UC signal quality is poor, and encouraging them to monitor closely and prepare for emergency delivery.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.00%
发文量
2608
审稿时长
14 weeks
期刊介绍: Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信