Exploring the effects of cannabidiol encapsulation in liposomes on their physicochemical properties and biocompatibility.

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Delivery Pub Date : 2025-12-01 Epub Date: 2025-02-06 DOI:10.1080/10717544.2025.2460666
Inga Jurgelane, Karina Egle, Andra Grava, Dana Galkina, Margarita Brante, Maksims Melnichuks, Marite Skrinda-Melne, Girts Salms, Arita Dubnika
{"title":"Exploring the effects of cannabidiol encapsulation in liposomes on their physicochemical properties and biocompatibility.","authors":"Inga Jurgelane, Karina Egle, Andra Grava, Dana Galkina, Margarita Brante, Maksims Melnichuks, Marite Skrinda-Melne, Girts Salms, Arita Dubnika","doi":"10.1080/10717544.2025.2460666","DOIUrl":null,"url":null,"abstract":"<p><p>Cannabidiol (CBD) is recognized for its therapeutic properties in various conditions. However, CBD's limited water solubility and sensitivity to environmental stresses hinder its efficacy and bioavailability. Encapsulation in drug delivery systems, particularly liposomes, offers a promising solution. This study aims to prepare CBD-containing liposomes using commercially used lipids distearoyl phosphatidylcholine (DSPC) and dipalmitoyl phosphatidylcholine (DPPC), and 1,2 distearoyl-sn-glycero-3 phosphoethanolamine-N-[carbonyl-amino(polyethylene glycol)-4300] (ammonium salt) (DSPE-PEG) and to perform <i>in vitro</i> studies - cell viability and CBD release. Liposomes were synthesized using thin-film hydration method, and characterized by Fourier-transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), and scanning transmission electron microscopy (STEM). DLS analysis revealed that CBD incorporation reduced liposome size by 23-53%, depending on the liposomes. Encapsulation efficiency followed the order: DPPC CBD (63%) < DSPC CBD (74%) < DSPC DPPC CBD (81%) < DSPC DSPE-PEG CBD (87%). CBD release profiles indicated that DPPC CBD liposomes released the highest CBD amount initially, while DSPC DSPE-PEG CBD exhibited sustained release, achieving 79% release over 504 h. <i>In vitro</i> cell viability tests showed that blank liposomes were non-cytotoxic. However, CBD-loaded liposomes significantly reduced cell viability for defined type of CBD containing liposomes. The inclusion of DSPE-PEG improved encapsulation efficiency and liposome stability, making DSPC DSPE-PEG CBD liposomes more suitable for long-term CBD release. Compared to other studies, encapsulation of CBD in liposomes enhances its bioavailability, allowing lower concentrations of CBD to be directly delivered to cells, resulting in observable changes in cell viability.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2460666"},"PeriodicalIF":6.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809167/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2025.2460666","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Cannabidiol (CBD) is recognized for its therapeutic properties in various conditions. However, CBD's limited water solubility and sensitivity to environmental stresses hinder its efficacy and bioavailability. Encapsulation in drug delivery systems, particularly liposomes, offers a promising solution. This study aims to prepare CBD-containing liposomes using commercially used lipids distearoyl phosphatidylcholine (DSPC) and dipalmitoyl phosphatidylcholine (DPPC), and 1,2 distearoyl-sn-glycero-3 phosphoethanolamine-N-[carbonyl-amino(polyethylene glycol)-4300] (ammonium salt) (DSPE-PEG) and to perform in vitro studies - cell viability and CBD release. Liposomes were synthesized using thin-film hydration method, and characterized by Fourier-transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), and scanning transmission electron microscopy (STEM). DLS analysis revealed that CBD incorporation reduced liposome size by 23-53%, depending on the liposomes. Encapsulation efficiency followed the order: DPPC CBD (63%) < DSPC CBD (74%) < DSPC DPPC CBD (81%) < DSPC DSPE-PEG CBD (87%). CBD release profiles indicated that DPPC CBD liposomes released the highest CBD amount initially, while DSPC DSPE-PEG CBD exhibited sustained release, achieving 79% release over 504 h. In vitro cell viability tests showed that blank liposomes were non-cytotoxic. However, CBD-loaded liposomes significantly reduced cell viability for defined type of CBD containing liposomes. The inclusion of DSPE-PEG improved encapsulation efficiency and liposome stability, making DSPC DSPE-PEG CBD liposomes more suitable for long-term CBD release. Compared to other studies, encapsulation of CBD in liposomes enhances its bioavailability, allowing lower concentrations of CBD to be directly delivered to cells, resulting in observable changes in cell viability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信