Expanding Yarrowia lipolytica's metabolic potential for detoxification of cyanogenic glycosides in edible plants.

IF 5.2 1区 生物学 Q1 BIOLOGY
Fidelis Azi, Zhiyu Li, Peng Xu
{"title":"Expanding Yarrowia lipolytica's metabolic potential for detoxification of cyanogenic glycosides in edible plants.","authors":"Fidelis Azi, Zhiyu Li, Peng Xu","doi":"10.1038/s42003-025-07628-5","DOIUrl":null,"url":null,"abstract":"<p><p>Cyanides are highly toxic chemicals in several edible plants that threaten food safety and human health. A phenotypically distinct Yarrowia lipolytica strain that efficiently detoxifies multiple cyanogenic glycosides from edible plants was constructed using a family 1 glycosyl-hydrolase (GH1). The strain displayed higher growth rates and metabolic activities when exposed to high concentrations of cyanides than the wild-type. It overexpressed genes that promoted the binding of molecular oxygen to the cytochrome iv complex. The engineered strain repressed fatty acid production to optimize energy production and activated the cyanide-resistant respiratory (AOX) pathway to circumvent HCN toxicity and maintain cellular homeostasis. It upregulated ribosome biogenesis, the sec-dependent protein export pathway, and the sulfur relay system to facilitate the production and transmembrane efflux of the secreted GH1 hydrolase. It efficiently degraded linamarin, amygdalin, prunasin, and dhurrin in food plants including cassava, germinated sorghum and Apricot seeds. The strain produced high phospholipids to support new membrane production and could be a cost-effective source of single-cell phospholipids. The findings demonstrate that the strain is a robust, sustainable, and potentially efficient strain that could be used for industrial bioconversion of plant materials containing glycosylated toxicants into safe foods and animal feeds.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"188"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07628-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cyanides are highly toxic chemicals in several edible plants that threaten food safety and human health. A phenotypically distinct Yarrowia lipolytica strain that efficiently detoxifies multiple cyanogenic glycosides from edible plants was constructed using a family 1 glycosyl-hydrolase (GH1). The strain displayed higher growth rates and metabolic activities when exposed to high concentrations of cyanides than the wild-type. It overexpressed genes that promoted the binding of molecular oxygen to the cytochrome iv complex. The engineered strain repressed fatty acid production to optimize energy production and activated the cyanide-resistant respiratory (AOX) pathway to circumvent HCN toxicity and maintain cellular homeostasis. It upregulated ribosome biogenesis, the sec-dependent protein export pathway, and the sulfur relay system to facilitate the production and transmembrane efflux of the secreted GH1 hydrolase. It efficiently degraded linamarin, amygdalin, prunasin, and dhurrin in food plants including cassava, germinated sorghum and Apricot seeds. The strain produced high phospholipids to support new membrane production and could be a cost-effective source of single-cell phospholipids. The findings demonstrate that the strain is a robust, sustainable, and potentially efficient strain that could be used for industrial bioconversion of plant materials containing glycosylated toxicants into safe foods and animal feeds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信