Therapeutic Mechanism of Zhishi Decoction Regulating P38/MAPK Signaling Pathway on Functional Constipation (FC).

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Jie Kang, Xu Yang, Nan Sui
{"title":"Therapeutic Mechanism of Zhishi Decoction Regulating P38/MAPK Signaling Pathway on Functional Constipation (FC).","authors":"Jie Kang, Xu Yang, Nan Sui","doi":"10.2174/0113862073332162241126105559","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Zhishi decoction (ZSD) is one of the most common herb decoctions in traditional Chinese medicine (TCM), and it is used for the treatment of FC. However, its main therapeutic mechanism is not yet clear. This study aims to explore the possible pharmacodynamic material basis and potential molecular mechanism from network pharmacology and molecular docking and verify them through animal experiments.</p><p><strong>Methods: </strong>Firstly, the effective ingredients, potential targets, and key targets of ZSD in the treatment of FC were screened through network pharmacology. Go and KEGG analyses were performed for potential targets. Secondly, molecular docking was used to link the main active components of ZSD with target genes to predict their possible molecular mechanisms. Finally, 30 male BALB/c mice (20±2 g) were randomly divided into five groups (n=6), including the blank group, ZSD groups with two dosages (7.15, 14.3 g/kg), FC model group, and positive group (lactulose group). All the mice were given difenoxate tablets for 14 days to establish FC model except the blank group. Moreover, the mice in the blank group were given the same volume of normal saline. After admination for 14 days, the whole colon tissues were obtained for the analysis of small intestinal propulsion rate, and the expression of P38MAPK in colon tissues of mice was observed via immunohistochemistry and WesterBlot.</p><p><strong>Results: </strong>In this study, 43 active ingredients in ZSD were identified. Four hundred and thirty potential therapeutic targets were selected, among which AKT1, MAPK12, and MAPK14 were key targets. 164 GO biological processes and 123 KEGG signaling pathways were identified after analysis, such as MAPK signaling pathway, TNF signaling pathway etc. The molecular docking results showed that Prangenin, 4-Hydroxyhomopterocarpin, isoponcimarin, and AKT1, MAPK12, MAPK14 had good binding degree. Additionally, ZSD could relieve the symptoms of FC in mice significantly. Compared with the model group, p38/MAPK positive expression cells and protein expression levels in the colon tissues of ZSD groups significantly increased in a dose-dependent manner (p<0.01).</p><p><strong>Conclusion: </strong>This study confirmed that ZSD could act on AKT1, MAPK12, and MAPK14 targets to activate the p38/MAPK signaling pathway to relieve FC induced by defenoxate tablets. The further development of ZSD provided a theoretical basis.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073332162241126105559","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Zhishi decoction (ZSD) is one of the most common herb decoctions in traditional Chinese medicine (TCM), and it is used for the treatment of FC. However, its main therapeutic mechanism is not yet clear. This study aims to explore the possible pharmacodynamic material basis and potential molecular mechanism from network pharmacology and molecular docking and verify them through animal experiments.

Methods: Firstly, the effective ingredients, potential targets, and key targets of ZSD in the treatment of FC were screened through network pharmacology. Go and KEGG analyses were performed for potential targets. Secondly, molecular docking was used to link the main active components of ZSD with target genes to predict their possible molecular mechanisms. Finally, 30 male BALB/c mice (20±2 g) were randomly divided into five groups (n=6), including the blank group, ZSD groups with two dosages (7.15, 14.3 g/kg), FC model group, and positive group (lactulose group). All the mice were given difenoxate tablets for 14 days to establish FC model except the blank group. Moreover, the mice in the blank group were given the same volume of normal saline. After admination for 14 days, the whole colon tissues were obtained for the analysis of small intestinal propulsion rate, and the expression of P38MAPK in colon tissues of mice was observed via immunohistochemistry and WesterBlot.

Results: In this study, 43 active ingredients in ZSD were identified. Four hundred and thirty potential therapeutic targets were selected, among which AKT1, MAPK12, and MAPK14 were key targets. 164 GO biological processes and 123 KEGG signaling pathways were identified after analysis, such as MAPK signaling pathway, TNF signaling pathway etc. The molecular docking results showed that Prangenin, 4-Hydroxyhomopterocarpin, isoponcimarin, and AKT1, MAPK12, MAPK14 had good binding degree. Additionally, ZSD could relieve the symptoms of FC in mice significantly. Compared with the model group, p38/MAPK positive expression cells and protein expression levels in the colon tissues of ZSD groups significantly increased in a dose-dependent manner (p<0.01).

Conclusion: This study confirmed that ZSD could act on AKT1, MAPK12, and MAPK14 targets to activate the p38/MAPK signaling pathway to relieve FC induced by defenoxate tablets. The further development of ZSD provided a theoretical basis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
327
审稿时长
7.5 months
期刊介绍: Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal: Target identification and validation Assay design, development, miniaturization and comparison High throughput/high content/in silico screening and associated technologies Label-free detection technologies and applications Stem cell technologies Biomarkers ADMET/PK/PD methodologies and screening Probe discovery and development, hit to lead optimization Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries) Chemical library design and chemical diversity Chemo/bio-informatics, data mining Compound management Pharmacognosy Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products) Natural Product Analytical Studies Bipharmaceutical studies of Natural products Drug repurposing Data management and statistical analysis Laboratory automation, robotics, microfluidics, signal detection technologies Current & Future Institutional Research Profile Technology transfer, legal and licensing issues Patents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信