{"title":"A systematic screening assay identifies efficient small guide RNAs for CRISPR activation.","authors":"Elin Arvidsson, Diana Duarte Lobo, Ermelinda Sabarese, Fabio Duarte, Rui Jorge Nobre, Luis Quintino, Cecilia Lundberg","doi":"10.3389/fbioe.2025.1336313","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-mediated gene activation (CRISPRa) encompasses a growing field of biotechnological approaches with exciting implications for gene therapy. However, there is a lack of experimental validation tools for selecting efficient sgRNAs for downstream applications. Here, we present a screening assay capable of identifying efficient single- and double sgRNAs through fluorescence quantification <i>in vitro</i>. In addition, we provide a tailored Golden Gate cloning workflow for streamlined incorporation of selected sgRNA candidates into lentiviral (LVs) or adeno-associated viral vectors (AAVs). The overall workflow was validated using therapeutically relevant genes for neurodegenerative diseases, including <i>Tfeb</i>, <i>Adam17</i>, and <i>Sirt1</i>. The most efficient sgRNAs also demonstrated activation of endogenous gene expression at mRNA level. Correlation analysis of gene activation relative to sgRNA binding site distance to transcription start-site or nearby transcription factor binding sites failed to detect common characteristics influencing gene activation in the selected promoter regions. This data demonstrates the potential of the screening assay to identify functionally efficient sgRNA candidates across multiple genes along with streamlined cloning of viral vectors and may assist in accelerating future developments of CRISPRa-focused applications.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1336313"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799263/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1336313","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR-mediated gene activation (CRISPRa) encompasses a growing field of biotechnological approaches with exciting implications for gene therapy. However, there is a lack of experimental validation tools for selecting efficient sgRNAs for downstream applications. Here, we present a screening assay capable of identifying efficient single- and double sgRNAs through fluorescence quantification in vitro. In addition, we provide a tailored Golden Gate cloning workflow for streamlined incorporation of selected sgRNA candidates into lentiviral (LVs) or adeno-associated viral vectors (AAVs). The overall workflow was validated using therapeutically relevant genes for neurodegenerative diseases, including Tfeb, Adam17, and Sirt1. The most efficient sgRNAs also demonstrated activation of endogenous gene expression at mRNA level. Correlation analysis of gene activation relative to sgRNA binding site distance to transcription start-site or nearby transcription factor binding sites failed to detect common characteristics influencing gene activation in the selected promoter regions. This data demonstrates the potential of the screening assay to identify functionally efficient sgRNA candidates across multiple genes along with streamlined cloning of viral vectors and may assist in accelerating future developments of CRISPRa-focused applications.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.