Bingqing Gao Facilitates the Healing Process of Full-Thickness Skin Defects in Rat Wounds by Activating the PI3K/AKT Pathway.

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Hong'e Ma, Rui Hu, Jiajun Guo, Xinfu Wang, Xin Liu, Ning Zhang, Ruilong Ren, Danyang Wang, Wenxian Zhang
{"title":"Bingqing Gao Facilitates the Healing Process of Full-Thickness Skin Defects in Rat Wounds by Activating the PI3K/AKT Pathway.","authors":"Hong'e Ma, Rui Hu, Jiajun Guo, Xinfu Wang, Xin Liu, Ning Zhang, Ruilong Ren, Danyang Wang, Wenxian Zhang","doi":"10.2174/0113862073311259240918081737","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Trauma, resulting from mechanical factors, entails damage to human tissues or organs. Whether occurring during times of war or peace, trauma is prevalent, particularly skin defects arising from surgery or external injuries. The development and design of effective wound dressings have become paramount. Bingqing Gao (BQG), rooted in Chinese folk medicine, is employed explicitly in trauma treatment based on Traditional Chinese Medicine (TCM) theory. This study aims to elucidate how BQG facilitates full-thickness skin wound healing in Sprague Dawley (SD) rats.</p><p><strong>Methods: </strong>Data collection commenced using two approaches: retrieval from TCM system pharmacology databases (TCMSP) and literature mining to compile the practical chemical components and targets of BQG. A drugtarget network was constructed. Subsequently, disease targets related to wound healing were collected to select core targets and pathways, building a drug-disease target protein-protein interaction (PPI) network using the ClusterONE algorithm to identify core genes. Gene Ontology (GO) and KEGG enrichment analyses were conducted based on the Metascape database. Finally, molecular docking validation was performed on the screened core targets and core components. In terms of in vivo experimentation, an SD rat full-thickness skin defect model was established, and varying doses of BQG were applied. Healing area, HE staining, Masson staining, ELISA, PCR, and other methods were employed to validate cytokines, differential proteins, and pathways. The study collectively discusses the mechanism and targets by which BQG promotes full-thickness skin wound healing in SD rats.</p><p><strong>Results: </strong>Through network pharmacology screening, we identified various active components, including resveratrol, Lithospermic acid B, sanguiinH-2, asernestioside A_qt, kaempferol, daidzein, quercetin, apigenin, and Medicarpin. The core targets encompass Interleukin-6 (IL-6), Protein Kinase B (AKT1), Vascular Endothelial Growth Factor A (VEGFA), Interleukin-1 beta (IL-1β), Tumor Protein 53 (TP53), Epidermal Growth Factor Receptor (EGFR), Tumor Necrosis Factor (TNF), Albumin (ALB), among others. Potential signaling pathways include Phosphoinositide 3-kinase (PI3K)/AKT, Tumor Necrosis Factor (TNF), Hypoxia-Inducible Factor-1 (HIF-1), and more. Molecular docking studies suggest a robust binding interaction between the active components of BQG and disease targets, indicating a potential regulation of cytokines through the PI3K/AKTsignaling pathway, thereby promoting wound healing. The results of the in vivo experiment revealed that, in comparison to the model group, both the rhb-FGF group and BQG-H group exhibit a noteworthy increase in the expression levels of PI3K and AKT genes. Concurrently, there is a significant decrease in the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. Additionally, there is a substantial increase in the levels of Transforming Growth Factor-beta (TGF-β) and Vascular Endothelial Growth Factor (VEGF).</p><p><strong>Conclusion: </strong>Network pharmacology results indicate that BQG promotes wound healing through multiple components, targets, and pathways. In vivo experimental results suggest that BQG may activate the PI3K/AKTsignaling pathway, inhibit the production and release of related pro-inflammatory cytokines IL-1β, IL- 6, and TNF-α, promote VEGF generation at the injury site, and enhance TGF-β signaling transduction, effectively regulates the inflammatory response at the site of injury, promotes vascular regeneration in the injury area, and induces the proliferation and migration of cells in the injury area, ultimately contributing to wound healing. This study establishes the foundation for a more profound understanding of the molecular mechanisms underlying BQG's promotion of wound healing and offers insights for future drug research on BQG.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073311259240918081737","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Trauma, resulting from mechanical factors, entails damage to human tissues or organs. Whether occurring during times of war or peace, trauma is prevalent, particularly skin defects arising from surgery or external injuries. The development and design of effective wound dressings have become paramount. Bingqing Gao (BQG), rooted in Chinese folk medicine, is employed explicitly in trauma treatment based on Traditional Chinese Medicine (TCM) theory. This study aims to elucidate how BQG facilitates full-thickness skin wound healing in Sprague Dawley (SD) rats.

Methods: Data collection commenced using two approaches: retrieval from TCM system pharmacology databases (TCMSP) and literature mining to compile the practical chemical components and targets of BQG. A drugtarget network was constructed. Subsequently, disease targets related to wound healing were collected to select core targets and pathways, building a drug-disease target protein-protein interaction (PPI) network using the ClusterONE algorithm to identify core genes. Gene Ontology (GO) and KEGG enrichment analyses were conducted based on the Metascape database. Finally, molecular docking validation was performed on the screened core targets and core components. In terms of in vivo experimentation, an SD rat full-thickness skin defect model was established, and varying doses of BQG were applied. Healing area, HE staining, Masson staining, ELISA, PCR, and other methods were employed to validate cytokines, differential proteins, and pathways. The study collectively discusses the mechanism and targets by which BQG promotes full-thickness skin wound healing in SD rats.

Results: Through network pharmacology screening, we identified various active components, including resveratrol, Lithospermic acid B, sanguiinH-2, asernestioside A_qt, kaempferol, daidzein, quercetin, apigenin, and Medicarpin. The core targets encompass Interleukin-6 (IL-6), Protein Kinase B (AKT1), Vascular Endothelial Growth Factor A (VEGFA), Interleukin-1 beta (IL-1β), Tumor Protein 53 (TP53), Epidermal Growth Factor Receptor (EGFR), Tumor Necrosis Factor (TNF), Albumin (ALB), among others. Potential signaling pathways include Phosphoinositide 3-kinase (PI3K)/AKT, Tumor Necrosis Factor (TNF), Hypoxia-Inducible Factor-1 (HIF-1), and more. Molecular docking studies suggest a robust binding interaction between the active components of BQG and disease targets, indicating a potential regulation of cytokines through the PI3K/AKTsignaling pathway, thereby promoting wound healing. The results of the in vivo experiment revealed that, in comparison to the model group, both the rhb-FGF group and BQG-H group exhibit a noteworthy increase in the expression levels of PI3K and AKT genes. Concurrently, there is a significant decrease in the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. Additionally, there is a substantial increase in the levels of Transforming Growth Factor-beta (TGF-β) and Vascular Endothelial Growth Factor (VEGF).

Conclusion: Network pharmacology results indicate that BQG promotes wound healing through multiple components, targets, and pathways. In vivo experimental results suggest that BQG may activate the PI3K/AKTsignaling pathway, inhibit the production and release of related pro-inflammatory cytokines IL-1β, IL- 6, and TNF-α, promote VEGF generation at the injury site, and enhance TGF-β signaling transduction, effectively regulates the inflammatory response at the site of injury, promotes vascular regeneration in the injury area, and induces the proliferation and migration of cells in the injury area, ultimately contributing to wound healing. This study establishes the foundation for a more profound understanding of the molecular mechanisms underlying BQG's promotion of wound healing and offers insights for future drug research on BQG.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
327
审稿时长
7.5 months
期刊介绍: Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal: Target identification and validation Assay design, development, miniaturization and comparison High throughput/high content/in silico screening and associated technologies Label-free detection technologies and applications Stem cell technologies Biomarkers ADMET/PK/PD methodologies and screening Probe discovery and development, hit to lead optimization Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries) Chemical library design and chemical diversity Chemo/bio-informatics, data mining Compound management Pharmacognosy Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products) Natural Product Analytical Studies Bipharmaceutical studies of Natural products Drug repurposing Data management and statistical analysis Laboratory automation, robotics, microfluidics, signal detection technologies Current & Future Institutional Research Profile Technology transfer, legal and licensing issues Patents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信