{"title":"Multi-step pre-treatment of rice husk for fractionation of components including silica.","authors":"Shinnosuke Ishida, Shinji Kudo, Shusaku Asano, Jun-Ichiro Hayashi","doi":"10.3389/fchem.2025.1538797","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Rice husk, a widely available agricultural by-product lignocellulosic biomass, is a promising and sustainable feedstock for organic and inorganic chemicals due to the rich silica content. However, its current application is largely limited, with most being incinerated as waste. This study introduces a novel multi-step pre-treatment process to fractionate these components efficiently, enabling their comprehensive valorization.</p><p><strong>Methods: </strong>The process begins with hydrothermal treatment, selectively extracting hemicellulose while preserving the structural integrity of other components. This is followed by an organosolv treatment using ethanol/water mixture, optimized to dissolve and extract organosolv lignin effectively. Subsequently, alkaline aqueous solution treatment under nitrogen atmosphere facilitates the recovery of silica as sodium silicate, a valuable industrial precursor. To ensure high-purity cellulose recovery, the final step employs alkaline hydrothermal processing under oxygen, achieving effective lignin depolymerization and removal.</p><p><strong>Results and discussion: </strong>Each step was carefully optimized, considering parameters such as temperature, solvent composition, and reaction time, to enhance selectivity and yield. Notably, this method reduces environmental negative impact by avoiding the use of acids while utilizing renewable solvents. The sequential application of these treatments resulted in separation exceeding 97% for hemicellulose, lignin, and silica, leaving high-purity cellulose with the loss of 22.8 wt%. Hemicellulose, organosolv lignin, and silica in the removed fractions were 66.5, 78.1, and 77.5 wt% at the first, second, and third treatments, respectively.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1538797"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798958/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1538797","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Rice husk, a widely available agricultural by-product lignocellulosic biomass, is a promising and sustainable feedstock for organic and inorganic chemicals due to the rich silica content. However, its current application is largely limited, with most being incinerated as waste. This study introduces a novel multi-step pre-treatment process to fractionate these components efficiently, enabling their comprehensive valorization.
Methods: The process begins with hydrothermal treatment, selectively extracting hemicellulose while preserving the structural integrity of other components. This is followed by an organosolv treatment using ethanol/water mixture, optimized to dissolve and extract organosolv lignin effectively. Subsequently, alkaline aqueous solution treatment under nitrogen atmosphere facilitates the recovery of silica as sodium silicate, a valuable industrial precursor. To ensure high-purity cellulose recovery, the final step employs alkaline hydrothermal processing under oxygen, achieving effective lignin depolymerization and removal.
Results and discussion: Each step was carefully optimized, considering parameters such as temperature, solvent composition, and reaction time, to enhance selectivity and yield. Notably, this method reduces environmental negative impact by avoiding the use of acids while utilizing renewable solvents. The sequential application of these treatments resulted in separation exceeding 97% for hemicellulose, lignin, and silica, leaving high-purity cellulose with the loss of 22.8 wt%. Hemicellulose, organosolv lignin, and silica in the removed fractions were 66.5, 78.1, and 77.5 wt% at the first, second, and third treatments, respectively.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.