Mahmud Omar, Salih Nassar, Kassem SharIf, Benjamin S Glicksberg, Girish N Nadkarni, Eyal Klang
{"title":"Emerging applications of NLP and large language models in gastroenterology and hepatology: a systematic review.","authors":"Mahmud Omar, Salih Nassar, Kassem SharIf, Benjamin S Glicksberg, Girish N Nadkarni, Eyal Klang","doi":"10.3389/fmed.2024.1512824","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aim: </strong>In the last years, natural language processing (NLP) has transformed significantly with the introduction of large language models (LLM). This review updates on NLP and LLM applications and challenges in gastroenterology and hepatology.</p><p><strong>Methods: </strong>Registered with PROSPERO (CRD42024542275) and adhering to PRISMA guidelines, we searched six databases for relevant studies published from 2003 to 2024, ultimately including 57 studies.</p><p><strong>Results: </strong>Our review of 57 studies notes an increase in relevant publications in 2023-2024 compared to previous years, reflecting growing interest in newer models such as GPT-3 and GPT-4. The results demonstrate that NLP models have enhanced data extraction from electronic health records and other unstructured medical data sources. Key findings include high precision in identifying disease characteristics from unstructured reports and ongoing improvement in clinical decision-making. Risk of bias assessments using ROBINS-I, QUADAS-2, and PROBAST tools confirmed the methodological robustness of the included studies.</p><p><strong>Conclusion: </strong>NLP and LLMs can enhance diagnosis and treatment in gastroenterology and hepatology. They enable extraction of data from unstructured medical records, such as endoscopy reports and patient notes, and for enhancing clinical decision-making. Despite these advancements, integrating these tools into routine practice is still challenging. Future work should prospectively demonstrate real-world value.</p>","PeriodicalId":12488,"journal":{"name":"Frontiers in Medicine","volume":"11 ","pages":"1512824"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799763/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fmed.2024.1512824","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aim: In the last years, natural language processing (NLP) has transformed significantly with the introduction of large language models (LLM). This review updates on NLP and LLM applications and challenges in gastroenterology and hepatology.
Methods: Registered with PROSPERO (CRD42024542275) and adhering to PRISMA guidelines, we searched six databases for relevant studies published from 2003 to 2024, ultimately including 57 studies.
Results: Our review of 57 studies notes an increase in relevant publications in 2023-2024 compared to previous years, reflecting growing interest in newer models such as GPT-3 and GPT-4. The results demonstrate that NLP models have enhanced data extraction from electronic health records and other unstructured medical data sources. Key findings include high precision in identifying disease characteristics from unstructured reports and ongoing improvement in clinical decision-making. Risk of bias assessments using ROBINS-I, QUADAS-2, and PROBAST tools confirmed the methodological robustness of the included studies.
Conclusion: NLP and LLMs can enhance diagnosis and treatment in gastroenterology and hepatology. They enable extraction of data from unstructured medical records, such as endoscopy reports and patient notes, and for enhancing clinical decision-making. Despite these advancements, integrating these tools into routine practice is still challenging. Future work should prospectively demonstrate real-world value.
期刊介绍:
Frontiers in Medicine publishes rigorously peer-reviewed research linking basic research to clinical practice and patient care, as well as translating scientific advances into new therapies and diagnostic tools. Led by an outstanding Editorial Board of international experts, this multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
In addition to papers that provide a link between basic research and clinical practice, a particular emphasis is given to studies that are directly relevant to patient care. In this spirit, the journal publishes the latest research results and medical knowledge that facilitate the translation of scientific advances into new therapies or diagnostic tools. The full listing of the Specialty Sections represented by Frontiers in Medicine is as listed below. As well as the established medical disciplines, Frontiers in Medicine is launching new sections that together will facilitate
- the use of patient-reported outcomes under real world conditions
- the exploitation of big data and the use of novel information and communication tools in the assessment of new medicines
- the scientific bases for guidelines and decisions from regulatory authorities
- access to medicinal products and medical devices worldwide
- addressing the grand health challenges around the world