WDRIV-Net: a weighted ensemble transfer learning to improve automatic type stratification of lumbar intervertebral disc bulge, prolapse, and herniation.
Ichiro Nakamoto, Hua Chen, Rui Wang, Yan Guo, Wei Chen, Jie Feng, Jianfeng Wu
{"title":"WDRIV-Net: a weighted ensemble transfer learning to improve automatic type stratification of lumbar intervertebral disc bulge, prolapse, and herniation.","authors":"Ichiro Nakamoto, Hua Chen, Rui Wang, Yan Guo, Wei Chen, Jie Feng, Jianfeng Wu","doi":"10.1186/s12938-025-01341-4","DOIUrl":null,"url":null,"abstract":"<p><p>The degeneration of the intervertebral discs in the lumbar spine is the common cause of neurological and physical dysfunctions and chronic disability of patients, which can be stratified into single-(e.g., disc herniation, prolapse, or bulge) and comorbidity-type degeneration (e.g., simultaneous presence of two or more conditions), respectively. A sample of lumbar magnetic resonance imaging (MRI) images from multiple clinical hospitals in China was collected and used in the proposal assessment. We devised a weighted transfer learning framework WDRIV-Net by ensembling four pre-trained models including Densenet169, ResNet101, InceptionV3, and VGG19. The proposed approach was applied to the clinical data and achieved 96.25% accuracy, surpassing the benchmark ResNet101 (87.5%), DenseNet169 (82.5%), VGG19 (88.75%), InceptionV3 (93.75%), and other state-of-the-art (SOTA) ensemble deep learning models. Furthermore, improved performance was observed as well for the metric of the area under the curve (AUC), producing a ≥ 7% increase versus other SOTA ensemble learning, a ≥ 6% increase versus most-studied models, and a ≥ 2% increase versus the baselines. WDRIV-Net can serve as a guide in the initial and efficient type screening of complex degeneration of lumbar intervertebral discs (LID) and assist in the early-stage selection of clinically differentiated treatment options.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"24 1","pages":"11"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800529/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-025-01341-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The degeneration of the intervertebral discs in the lumbar spine is the common cause of neurological and physical dysfunctions and chronic disability of patients, which can be stratified into single-(e.g., disc herniation, prolapse, or bulge) and comorbidity-type degeneration (e.g., simultaneous presence of two or more conditions), respectively. A sample of lumbar magnetic resonance imaging (MRI) images from multiple clinical hospitals in China was collected and used in the proposal assessment. We devised a weighted transfer learning framework WDRIV-Net by ensembling four pre-trained models including Densenet169, ResNet101, InceptionV3, and VGG19. The proposed approach was applied to the clinical data and achieved 96.25% accuracy, surpassing the benchmark ResNet101 (87.5%), DenseNet169 (82.5%), VGG19 (88.75%), InceptionV3 (93.75%), and other state-of-the-art (SOTA) ensemble deep learning models. Furthermore, improved performance was observed as well for the metric of the area under the curve (AUC), producing a ≥ 7% increase versus other SOTA ensemble learning, a ≥ 6% increase versus most-studied models, and a ≥ 2% increase versus the baselines. WDRIV-Net can serve as a guide in the initial and efficient type screening of complex degeneration of lumbar intervertebral discs (LID) and assist in the early-stage selection of clinically differentiated treatment options.
期刊介绍:
BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering.
BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to:
Bioinformatics-
Bioinstrumentation-
Biomechanics-
Biomedical Devices & Instrumentation-
Biomedical Signal Processing-
Healthcare Information Systems-
Human Dynamics-
Neural Engineering-
Rehabilitation Engineering-
Biomaterials-
Biomedical Imaging & Image Processing-
BioMEMS and On-Chip Devices-
Bio-Micro/Nano Technologies-
Biomolecular Engineering-
Biosensors-
Cardiovascular Systems Engineering-
Cellular Engineering-
Clinical Engineering-
Computational Biology-
Drug Delivery Technologies-
Modeling Methodologies-
Nanomaterials and Nanotechnology in Biomedicine-
Respiratory Systems Engineering-
Robotics in Medicine-
Systems and Synthetic Biology-
Systems Biology-
Telemedicine/Smartphone Applications in Medicine-
Therapeutic Systems, Devices and Technologies-
Tissue Engineering