Wemerson de Castro Oliveira, Pedro Henrique Marques, Magnolia Martins Erhardt, Andrei Giacchetto Felice, Caio Luigi Antunes Moura Tristão, Flavia Figueira Aburjaile, Maria Beatriz Prior Pinto Oliveira, Neila Silvia Pereira Dos Santos Richards
{"title":"Metagenomic analysis and proteins prediction of emerging pathogens in artisanal cheese.","authors":"Wemerson de Castro Oliveira, Pedro Henrique Marques, Magnolia Martins Erhardt, Andrei Giacchetto Felice, Caio Luigi Antunes Moura Tristão, Flavia Figueira Aburjaile, Maria Beatriz Prior Pinto Oliveira, Neila Silvia Pereira Dos Santos Richards","doi":"10.1007/s11030-025-11116-7","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, reports of the presence of emerging pathogens in cheeses are low and new outbreaks have occurred at an alarming rate, with the Vibrio and Aeromonas genera being the main causes of gastroenteritis in the world. Therefore, Multi-Omics integration has been a strategy to identify and develop detection methods for these pathogens in food. We investigated the presence of emerging pathogens in artisanal cheeses and predicted proteins with immunogenic potential, in silico, for food diagnostics. For this, multiomics integration was used: (a) metagenomics; (b) subtractive genomics; and (c) pan-genomics. Eight species of the genera Vibrio and Aeromonas were identified, the latter being the most abundant (89.7%) and identified in eight regions, with emphasis on the species A. caviae and A. veronii. Pan-genomic analyses revealed intra- and inter-species differences in both genera. Essential, non-cytoplasmic proteins were identified, without homology and with immunological potential for the species researched. Functional annotation of genes present in pan-genomic subsets reveals functionality between the core genome (transcription; amino acid transport and metabolism; and inorganic ion transport and metabolism) and the shared genome (signal transduction and carbohydrate transport and metabolism). A reinterpretation of the genomic plasticity of V. furnissii reveals the presence of mobile genetic elements critical for virulence in human isolates and the RTX toxin, also identified in this species, is present in the pathogenicity islands of V. alginolyticus and V. fluvialis. Collectively, the results provide important information for the development of a diagnostic strategy for emerging pathogens in food using immunoassays.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11116-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, reports of the presence of emerging pathogens in cheeses are low and new outbreaks have occurred at an alarming rate, with the Vibrio and Aeromonas genera being the main causes of gastroenteritis in the world. Therefore, Multi-Omics integration has been a strategy to identify and develop detection methods for these pathogens in food. We investigated the presence of emerging pathogens in artisanal cheeses and predicted proteins with immunogenic potential, in silico, for food diagnostics. For this, multiomics integration was used: (a) metagenomics; (b) subtractive genomics; and (c) pan-genomics. Eight species of the genera Vibrio and Aeromonas were identified, the latter being the most abundant (89.7%) and identified in eight regions, with emphasis on the species A. caviae and A. veronii. Pan-genomic analyses revealed intra- and inter-species differences in both genera. Essential, non-cytoplasmic proteins were identified, without homology and with immunological potential for the species researched. Functional annotation of genes present in pan-genomic subsets reveals functionality between the core genome (transcription; amino acid transport and metabolism; and inorganic ion transport and metabolism) and the shared genome (signal transduction and carbohydrate transport and metabolism). A reinterpretation of the genomic plasticity of V. furnissii reveals the presence of mobile genetic elements critical for virulence in human isolates and the RTX toxin, also identified in this species, is present in the pathogenicity islands of V. alginolyticus and V. fluvialis. Collectively, the results provide important information for the development of a diagnostic strategy for emerging pathogens in food using immunoassays.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;