Assessment of Genetic Variability and Population Structure of Betula utilis subsp. jacquemontii in the Western Himalayan Region of India.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Harish Chandra Singh, Vandana Tiwari, Narender Kumar, Tikam Singh Rana
{"title":"Assessment of Genetic Variability and Population Structure of Betula utilis subsp. jacquemontii in the Western Himalayan Region of India.","authors":"Harish Chandra Singh, Vandana Tiwari, Narender Kumar, Tikam Singh Rana","doi":"10.1007/s10528-025-11032-3","DOIUrl":null,"url":null,"abstract":"<p><p>Betula utilis subsp. jacquemontii (Spach) Ashburner & McAll. is a medicinally and ecologically important tree species in the Western Himalayan Region (WHR) of India. Estimation of genetic variability and population structure of 11 populations of B. utilis subsp. jacquemontii in the WHR were carried out using 15 ISSR and 10 DAMD markers. The cumulative analyses of the markers (ISSR + DAMD) revealed a moderate level (49.47%) of polymorphism at the species level. Khilanmarg, Gangotri, and Khaliya top populations showed the highest polymorphism, while the Bhyundar Valley and Chatru-Kaza road populations showed the lowest polymorphism across 11 populations. Mantel test revealed a positive correlation between pair-wise genetic and geographical distances in wild populations of B. utilis subsp. jacquemontii in the WHR. The AMOVA analysis showed that majority of variation of the species exists among populations (54%), followed by within populations (20%). The clustering pattern obtained from UPGMA, PCoA, and STRUCTURE analyses revealed that 11 natural populations of B. utilis subsp. jacquemontii separated into two distinct genetic clusters. The genetic differentiation is notably high (G<sub>ST</sub> = 0.74) among populations with a low gene flow (Nm = 0.16), which could be attributed to geographic isolation, high mountain ranges, regional climatic conditions, and habitat destruction in the WHR. The genetically diverse populations recognized in this study could be a valuable genetic resource for conservation and management of this important timberline tree species.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11032-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Betula utilis subsp. jacquemontii (Spach) Ashburner & McAll. is a medicinally and ecologically important tree species in the Western Himalayan Region (WHR) of India. Estimation of genetic variability and population structure of 11 populations of B. utilis subsp. jacquemontii in the WHR were carried out using 15 ISSR and 10 DAMD markers. The cumulative analyses of the markers (ISSR + DAMD) revealed a moderate level (49.47%) of polymorphism at the species level. Khilanmarg, Gangotri, and Khaliya top populations showed the highest polymorphism, while the Bhyundar Valley and Chatru-Kaza road populations showed the lowest polymorphism across 11 populations. Mantel test revealed a positive correlation between pair-wise genetic and geographical distances in wild populations of B. utilis subsp. jacquemontii in the WHR. The AMOVA analysis showed that majority of variation of the species exists among populations (54%), followed by within populations (20%). The clustering pattern obtained from UPGMA, PCoA, and STRUCTURE analyses revealed that 11 natural populations of B. utilis subsp. jacquemontii separated into two distinct genetic clusters. The genetic differentiation is notably high (GST = 0.74) among populations with a low gene flow (Nm = 0.16), which could be attributed to geographic isolation, high mountain ranges, regional climatic conditions, and habitat destruction in the WHR. The genetically diverse populations recognized in this study could be a valuable genetic resource for conservation and management of this important timberline tree species.

白桦亚种遗传变异及种群结构评价。印度喜玛拉雅西部地区的jacquemontii。
桦树亚属。jacquemontii (Spach) Ashburner & McAll。是印度西喜马拉雅地区(WHR)重要的药用和生态树种。11个居群的遗传变异及居群结构分析。利用15个ISSR标记和10个DAMD标记对大叶茅进行了研究。ISSR + DAMD的累积分析显示,在种水平上多态性为中等水平(49.47%)。Khilanmarg、Gangotri和Khaliya居群多态性最高,而Bhyundar Valley和chatu - kaza road居群多态性最低。Mantel检验结果表明,白僵菌野生种群的遗传距离与地理距离呈正相关。jacquemontii在WHR。AMOVA分析表明,种群间变异居多(54%),种群内变异次之(20%)。UPGMA、PCoA和STRUCTURE聚类分析结果表明,该种群共有11个天然居群。Jacquemontii分为两个不同的遗传群。遗传分化程度高(GST = 0.74),而基因流量低(Nm = 0.16),这可能与地理隔离、高山、区域气候条件和生境破坏有关。本研究发现的遗传多样性种群可为这一重要林线树种的保护和管理提供宝贵的遗传资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信