Stabilizing zinc anodes with sodium lignosulfonate-doped polypyrrole.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yaqi Ni, Qifan Liu, Tao Xue, Limin Zang, Xiuwen Yu, Jiali Zhang, Chao Yang
{"title":"Stabilizing zinc anodes with sodium lignosulfonate-doped polypyrrole.","authors":"Yaqi Ni, Qifan Liu, Tao Xue, Limin Zang, Xiuwen Yu, Jiali Zhang, Chao Yang","doi":"10.1016/j.ijbiomac.2025.140691","DOIUrl":null,"url":null,"abstract":"<p><p>Despite zinc-based electrochemical energy storage being considered a safe and efficient energy storage system, problems such as uncontrolled dendrite growth, hydrogen precipitation reactions, and corrosion have seriously hindered its commercialization. Mitigating dendrite growth and other associated issues is crucial for the successful commercialization of these systems. Sodium lignosulfonate is an excellent dopant for conductive polymers, which can endow conductive polymers with abundant functional groups. Herein, we propose a sodium lignosulfonate-doped polypyrrole protective layer for zinc anodes with good hydrophilicity, electrical conductivity, and a porous structure, which can effectively inhibit the growth of zinc dendrites and side reactions. The doping of sodium lignosulfonate introduces numerous zincophilic groups. The sulfonate groups enhance zinc ion interaction and regulate flux, while phenolic hydroxyl groups increase zincophilic sites, aiding in the uniform deposition of zinc.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140691"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140691","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite zinc-based electrochemical energy storage being considered a safe and efficient energy storage system, problems such as uncontrolled dendrite growth, hydrogen precipitation reactions, and corrosion have seriously hindered its commercialization. Mitigating dendrite growth and other associated issues is crucial for the successful commercialization of these systems. Sodium lignosulfonate is an excellent dopant for conductive polymers, which can endow conductive polymers with abundant functional groups. Herein, we propose a sodium lignosulfonate-doped polypyrrole protective layer for zinc anodes with good hydrophilicity, electrical conductivity, and a porous structure, which can effectively inhibit the growth of zinc dendrites and side reactions. The doping of sodium lignosulfonate introduces numerous zincophilic groups. The sulfonate groups enhance zinc ion interaction and regulate flux, while phenolic hydroxyl groups increase zincophilic sites, aiding in the uniform deposition of zinc.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信