Qun-Gao Chen, Wei-Ting Liao, Rou-Yi Li, Ignacio Sanjuán, Ning-Cian Hsiao, Chan-Tat Ng, Ting-Ting Chang, Antonio Guerrero, Chu-Chen Chueh, Wen-Ya Lee
{"title":"Organic Solid-State Electrolyte Synaptic Transistors with Photoinduced Thiol-Ene Cross-linked Polymer Electrolytes for Deep Neural Networks.","authors":"Qun-Gao Chen, Wei-Ting Liao, Rou-Yi Li, Ignacio Sanjuán, Ning-Cian Hsiao, Chan-Tat Ng, Ting-Ting Chang, Antonio Guerrero, Chu-Chen Chueh, Wen-Ya Lee","doi":"10.1021/acsmaterialslett.4c02511","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we describe a solid-state polymer electrolyte (SPE)-based electrolyte-gated organic field-effect transistors (EGOFETs) consisting of a thiol-ene-assisted photo-cross-linked nitrile butadiene rubber (NBR) network embedded with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte. The photocurable SPE film can be patterned with different dimensions by photolithography and exhibits excellent electronic properties and crucial synaptic behavior. The photocurable NBR/LiTFSI EGOFET exhibits a high transconductance of 11.9 mS and a high on/off ratio of 10<sup>5</sup> at a scan rate of 40 mV/s. Due to the strongly polarized nature of the photo-cross-linked NBR network and Li-ion diffusion, the NBR/LiTFSI device exhibits a significant current hysteresis, enabling synaptic-like learning and memory behavior. The NBR/LiTFSI device demonstrates a DNN of 91.9% handwritten digit recognition accuracy. This work demonstrates the potential of the solid-state NBR/LiTFSI EGOFET in creating highly efficient and low-energy neuromorphic devices.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 2","pages":"682-691"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.4c02511","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/3 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we describe a solid-state polymer electrolyte (SPE)-based electrolyte-gated organic field-effect transistors (EGOFETs) consisting of a thiol-ene-assisted photo-cross-linked nitrile butadiene rubber (NBR) network embedded with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte. The photocurable SPE film can be patterned with different dimensions by photolithography and exhibits excellent electronic properties and crucial synaptic behavior. The photocurable NBR/LiTFSI EGOFET exhibits a high transconductance of 11.9 mS and a high on/off ratio of 105 at a scan rate of 40 mV/s. Due to the strongly polarized nature of the photo-cross-linked NBR network and Li-ion diffusion, the NBR/LiTFSI device exhibits a significant current hysteresis, enabling synaptic-like learning and memory behavior. The NBR/LiTFSI device demonstrates a DNN of 91.9% handwritten digit recognition accuracy. This work demonstrates the potential of the solid-state NBR/LiTFSI EGOFET in creating highly efficient and low-energy neuromorphic devices.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.