Kangwei Song, Yu Shen, Tongmin Xu, Yushuang Lin, Zheming Chen, Weicheng Zhang, Congyu He, Zhenzhong Yang, Ke Qu, Zheyuan Liu, Yan Yu, Chengkai Yang
{"title":"Suppressing intergranular cracking with near-surface layer regulation for electrochemical-thermal stabilization of LiCoO<sub>2</sub>.","authors":"Kangwei Song, Yu Shen, Tongmin Xu, Yushuang Lin, Zheming Chen, Weicheng Zhang, Congyu He, Zhenzhong Yang, Ke Qu, Zheyuan Liu, Yan Yu, Chengkai Yang","doi":"10.1039/d4mh01710b","DOIUrl":null,"url":null,"abstract":"<p><p>To further meet the application needs of lithium-ion batteries, developing cathodes with higher voltage and higher operating temperatures has become a primary goal. However, LiCoO<sub>2</sub> cathodes encounter structural issues, particle fracture, and side reactions during high-voltage and high-temperature cycling. Thus, this work designs a novel interface engineering approach involving near-surface Li layer regulation and enhances the stability of the <i>R</i>3̄<i>m</i> layered structure, suppressing intergranular cracking. An undistorted surface with reduced phase transitions was revealed by the HAADF-STEM. The interface regulation by post-cycle simulations and XRD stabilizes interplanar spacing. The strong B-O bonds lower the O 2p energies, preventing oxygen loss and side reactions confirmed by XPS and band structure. Therefore, even under 50 °C, the half-cell maintains a capacity retention rate of 79% after 200 cycles at 5C at 4.5 V.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01710b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To further meet the application needs of lithium-ion batteries, developing cathodes with higher voltage and higher operating temperatures has become a primary goal. However, LiCoO2 cathodes encounter structural issues, particle fracture, and side reactions during high-voltage and high-temperature cycling. Thus, this work designs a novel interface engineering approach involving near-surface Li layer regulation and enhances the stability of the R3̄m layered structure, suppressing intergranular cracking. An undistorted surface with reduced phase transitions was revealed by the HAADF-STEM. The interface regulation by post-cycle simulations and XRD stabilizes interplanar spacing. The strong B-O bonds lower the O 2p energies, preventing oxygen loss and side reactions confirmed by XPS and band structure. Therefore, even under 50 °C, the half-cell maintains a capacity retention rate of 79% after 200 cycles at 5C at 4.5 V.