In situ formation of NaTi2(PO4)3 coating layers to enhance the high-temperature performance of NaNi1/3Fe1/3Mn1/3O2 cathode materials†

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wu Meng, Huajun Guo, Zhixing Wang, Guangchao Li, Bichao Wu, Jiexi Wang, Wenjie Peng, Xinhai Li, Hui Duan and Guochun Yan
{"title":"In situ formation of NaTi2(PO4)3 coating layers to enhance the high-temperature performance of NaNi1/3Fe1/3Mn1/3O2 cathode materials†","authors":"Wu Meng, Huajun Guo, Zhixing Wang, Guangchao Li, Bichao Wu, Jiexi Wang, Wenjie Peng, Xinhai Li, Hui Duan and Guochun Yan","doi":"10.1039/D4MH01766H","DOIUrl":null,"url":null,"abstract":"<p >The insufficient structure and interfacial stability of O3-type layered oxide cathode materials hinder their practical application in sodium-ion batteries, particularly at high temperatures. In this study, a thin, island-like NaTi<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> coating layer (∼15 nm) is constructed on the surface of NaNi<small><sub>1/3</sub></small>Fe<small><sub>1/3</sub></small>Mn<small><sub>1/3</sub></small>O<small><sub>2</sub></small> through an <em>in situ</em> reaction involving nano-TiO<small><sub>2</sub></small>, Na<small><sub>2</sub></small>CO<small><sub>3</sub></small> and NH<small><sub>4</sub></small>H<small><sub>2</sub></small>PO<small><sub>4</sub></small>. During the high-temperature calcination process, partial Ti-atom diffusion into the NaNi<small><sub>1/3</sub></small>Fe<small><sub>1/3</sub></small>Mn<small><sub>1/3</sub></small>O<small><sub>2</sub></small> lattice results in the expansion of the interslab of the sodium layer and a reduction in lattice oxygen vacancies. Benefitting from the stable NaTi<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small>-modified interface and enhanced structural stability, the NaNi<small><sub>1/3</sub></small>Fe<small><sub>1/3</sub></small>Mn<small><sub>1/3</sub></small>O<small><sub>2</sub></small> coated with 2 wt% NaTi<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> exhibits optimal cycle stability at high temperature. It retains 90.3% of its initial capacity after 100 cycles at 0.5C (1C = 130 mA g<small><sup>−1</sup></small>, 45 °C). This dual-modification strategy, obtained from a facile approach, has the potential to facilitate the practical application of O3-type layered oxide cathode materials.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 9","pages":" 3160-3170"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d4mh01766h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The insufficient structure and interfacial stability of O3-type layered oxide cathode materials hinder their practical application in sodium-ion batteries, particularly at high temperatures. In this study, a thin, island-like NaTi2(PO4)3 coating layer (∼15 nm) is constructed on the surface of NaNi1/3Fe1/3Mn1/3O2 through an in situ reaction involving nano-TiO2, Na2CO3 and NH4H2PO4. During the high-temperature calcination process, partial Ti-atom diffusion into the NaNi1/3Fe1/3Mn1/3O2 lattice results in the expansion of the interslab of the sodium layer and a reduction in lattice oxygen vacancies. Benefitting from the stable NaTi2(PO4)3-modified interface and enhanced structural stability, the NaNi1/3Fe1/3Mn1/3O2 coated with 2 wt% NaTi2(PO4)3 exhibits optimal cycle stability at high temperature. It retains 90.3% of its initial capacity after 100 cycles at 0.5C (1C = 130 mA g−1, 45 °C). This dual-modification strategy, obtained from a facile approach, has the potential to facilitate the practical application of O3-type layered oxide cathode materials.

Abstract Image

原位形成NaTi2(PO4)3涂层,提高了NaNi1/3Fe1/3Mn1/3O2正极材料的高温性能。
o3型层状氧化物正极材料的结构和界面稳定性不足,阻碍了其在钠离子电池中的实际应用,特别是在高温下。在本研究中,通过纳米tio2、Na2CO3和NH4H2PO4的原位反应,在NaNi1/3Fe1/3Mn1/3O2表面构建了一层薄薄的岛状NaTi2(PO4)3涂层(~ 15 nm)。在高温煅烧过程中,部分ti原子扩散到NaNi1/3Fe1/3Mn1/3O2晶格中,导致钠层间板膨胀,晶格氧空位减少。得益于稳定的NaTi2(PO4)3修饰界面和增强的结构稳定性,2wt %的NaTi2(PO4)3涂层的NaNi1/3Fe1/3Mn1/3O2在高温下表现出最佳的循环稳定性。在0.5C (1C = 130 mA g- 1,45°C)下循环100次后,它仍保持90.3%的初始容量。这种双改性策略,通过简单的方法获得,有可能促进o3型层状氧化物阴极材料的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信