Adeel Ahmad, Iqra Reyaz Hamdani, Abdul Rasheed Pillantakath, Ahmed Al Shoaibi, Srinivasakannan Chandrasekar, Mohammad Mozahar Hossain
{"title":"Impact of Promoters on the Catalytic Performance of Nanostructured Nickel/Carbon Matrix for the Decomposition of Methane","authors":"Adeel Ahmad, Iqra Reyaz Hamdani, Abdul Rasheed Pillantakath, Ahmed Al Shoaibi, Srinivasakannan Chandrasekar, Mohammad Mozahar Hossain","doi":"10.1002/aesr.202400287","DOIUrl":null,"url":null,"abstract":"<p>It is of paramount importance to develop efficient catalysts for methane decomposition that withstands high operating temperatures, as the reaction is endothermic equilibrium in nature. Hence, an attempt is made to assess the effect of promoters namely Cu and Mo on the Ni/porous carbon matrix, synthesized using a hydrothermal method. The proportion of Cu and Mo are varied to determine the optimal loading, to maximize conversion and stability using pure methane as the feedstock. The space velocity is varied from 5000 to 8000 mL h<sup>−1</sup> g<sub>cat</sub> to investigate the effects on methane conversion and stability. Both Cu and Mo at 5% loading are found to offer the maximum methane conversion (%) and stability. A conversion exceeding 90% can be achieved at 850 °C with pure methane feed. The catalysts demonstrate remarkable stability up to 4 h, with 40% feed concentration yielding around 83% conversion for Mo and 74% for Cu. The incorporation of promoters had a notable impact on both the catalytic activity and stability as it contributes to the better dispersion of the metal over the catalytic surface, as evidenced by the reduction in the crystallite size. The best performing catalysts exhibit a wide distribution of high-quality filamentous carbon over their surface.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 2","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400287","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
It is of paramount importance to develop efficient catalysts for methane decomposition that withstands high operating temperatures, as the reaction is endothermic equilibrium in nature. Hence, an attempt is made to assess the effect of promoters namely Cu and Mo on the Ni/porous carbon matrix, synthesized using a hydrothermal method. The proportion of Cu and Mo are varied to determine the optimal loading, to maximize conversion and stability using pure methane as the feedstock. The space velocity is varied from 5000 to 8000 mL h−1 gcat to investigate the effects on methane conversion and stability. Both Cu and Mo at 5% loading are found to offer the maximum methane conversion (%) and stability. A conversion exceeding 90% can be achieved at 850 °C with pure methane feed. The catalysts demonstrate remarkable stability up to 4 h, with 40% feed concentration yielding around 83% conversion for Mo and 74% for Cu. The incorporation of promoters had a notable impact on both the catalytic activity and stability as it contributes to the better dispersion of the metal over the catalytic surface, as evidenced by the reduction in the crystallite size. The best performing catalysts exhibit a wide distribution of high-quality filamentous carbon over their surface.
期刊介绍:
Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields.
In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including:
CAS: Chemical Abstracts Service (ACS)
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (Clarivate Analytics)
INSPEC (IET)
Web of Science (Clarivate Analytics).