On the order of the classical Erdős–Rogers functions

IF 0.8 3区 数学 Q2 MATHEMATICS
Dhruv Mubayi, Jacques Verstraete
{"title":"On the order of the classical Erdős–Rogers functions","authors":"Dhruv Mubayi,&nbsp;Jacques Verstraete","doi":"10.1112/blms.13214","DOIUrl":null,"url":null,"abstract":"<p>For an integer <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n \\geqslant 1$</annotation>\n </semantics></math>, the Erdős–Rogers function <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$f_{s,s+1}(n)$</annotation>\n </semantics></math> is the maximum integer <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> such that every <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>s</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$K_{s+1}$</annotation>\n </semantics></math>-free graph has a <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mi>s</mi>\n </msub>\n <annotation>$K_s$</annotation>\n </semantics></math>-free induced subgraph with <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> vertices. It is known that for all <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$s \\geqslant 3$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>Ω</mi>\n <mrow>\n <mo>(</mo>\n <msqrt>\n <mrow>\n <mi>n</mi>\n <mi>log</mi>\n <mi>n</mi>\n </mrow>\n </msqrt>\n <mo>/</mo>\n <msqrt>\n <mrow>\n <mi>log</mi>\n <mi>log</mi>\n <mi>n</mi>\n </mrow>\n </msqrt>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$f_{s,s+1}(n) = \\Omega (\\sqrt {n\\log n}/\\sqrt {\\log \\log n})$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$n \\rightarrow \\infty$</annotation>\n </semantics></math>. In this paper, we show that for all <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$s \\geqslant 3$</annotation>\n </semantics></math>, there exists a constant <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>c</mi>\n <mi>s</mi>\n </msub>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$c_s &gt; 0$</annotation>\n </semantics></math> such that\n\n </p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 2","pages":"582-598"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13214","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For an integer n 1 $n \geqslant 1$ , the Erdős–Rogers function f s , s + 1 ( n ) $f_{s,s+1}(n)$ is the maximum integer m $m$ such that every n $n$ -vertex K s + 1 $K_{s+1}$ -free graph has a K s $K_s$ -free induced subgraph with m $m$ vertices. It is known that for all s 3 $s \geqslant 3$ , f s , s + 1 ( n ) = Ω ( n log n / log log n ) $f_{s,s+1}(n) = \Omega (\sqrt {n\log n}/\sqrt {\log \log n})$ as n $n \rightarrow \infty$ . In this paper, we show that for all s 3 $s \geqslant 3$ , there exists a constant c s > 0 $c_s > 0$ such that

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信