{"title":"On the order of the classical Erdős–Rogers functions","authors":"Dhruv Mubayi, Jacques Verstraete","doi":"10.1112/blms.13214","DOIUrl":null,"url":null,"abstract":"<p>For an integer <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n \\geqslant 1$</annotation>\n </semantics></math>, the Erdős–Rogers function <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$f_{s,s+1}(n)$</annotation>\n </semantics></math> is the maximum integer <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> such that every <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>s</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$K_{s+1}$</annotation>\n </semantics></math>-free graph has a <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mi>s</mi>\n </msub>\n <annotation>$K_s$</annotation>\n </semantics></math>-free induced subgraph with <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> vertices. It is known that for all <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$s \\geqslant 3$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>Ω</mi>\n <mrow>\n <mo>(</mo>\n <msqrt>\n <mrow>\n <mi>n</mi>\n <mi>log</mi>\n <mi>n</mi>\n </mrow>\n </msqrt>\n <mo>/</mo>\n <msqrt>\n <mrow>\n <mi>log</mi>\n <mi>log</mi>\n <mi>n</mi>\n </mrow>\n </msqrt>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$f_{s,s+1}(n) = \\Omega (\\sqrt {n\\log n}/\\sqrt {\\log \\log n})$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$n \\rightarrow \\infty$</annotation>\n </semantics></math>. In this paper, we show that for all <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$s \\geqslant 3$</annotation>\n </semantics></math>, there exists a constant <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>c</mi>\n <mi>s</mi>\n </msub>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$c_s > 0$</annotation>\n </semantics></math> such that\n\n </p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 2","pages":"582-598"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13214","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For an integer , the Erdős–Rogers function is the maximum integer such that every -vertex -free graph has a -free induced subgraph with vertices. It is known that for all , as . In this paper, we show that for all , there exists a constant such that