Constructions of superabundant tropical curves in higher genus

IF 0.8 3区 数学 Q2 MATHEMATICS
Sae Koyama
{"title":"Constructions of superabundant tropical curves in higher genus","authors":"Sae Koyama","doi":"10.1112/blms.13209","DOIUrl":null,"url":null,"abstract":"<p>We construct qualitatively new examples of superabundant tropical curves which are non-realisable in genuses 3 and 4. These curves are in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>3</mn>\n </msup>\n <annotation>${\\mathbb {R}}^3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>4</mn>\n </msup>\n <annotation>${\\mathbb {R}}^4$</annotation>\n </semantics></math>, respectively, and have properties resembling canonical embeddings of genus 3 and 4 algebraic curves. In particular, the genus 3 example is a degree 4 planar tropical curve, and the genus 4 example is contained in the product of a tropical line and a tropical conic. They have excess dimension of deformation space equal to 1. Non-realisability follows by combining this with a dimension calculation for the corresponding space of logarithmic curves.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 2","pages":"490-509"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13209","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13209","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct qualitatively new examples of superabundant tropical curves which are non-realisable in genuses 3 and 4. These curves are in R 3 ${\mathbb {R}}^3$ and R 4 ${\mathbb {R}}^4$ , respectively, and have properties resembling canonical embeddings of genus 3 and 4 algebraic curves. In particular, the genus 3 example is a degree 4 planar tropical curve, and the genus 4 example is contained in the product of a tropical line and a tropical conic. They have excess dimension of deformation space equal to 1. Non-realisability follows by combining this with a dimension calculation for the corresponding space of logarithmic curves.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信