Detecting flying objects in synthetic aperture radar images using Moving Target Indicator methods

IF 1.4 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Elliot J. Hansen, Brian W.-H. Ng, Mark Preiss
{"title":"Detecting flying objects in synthetic aperture radar images using Moving Target Indicator methods","authors":"Elliot J. Hansen,&nbsp;Brian W.-H. Ng,&nbsp;Mark Preiss","doi":"10.1049/rsn2.12676","DOIUrl":null,"url":null,"abstract":"<p>The growing proliferation of synthetic aperture radar (SAR) sensors brings the tantalising prospect of extending their utility into ‘novel’ applications. One potential extension is the detection of fast moving and accelerating flying objects in SAR imagery. However, since SAR image formation typically assumes the scene to be static over the coherent processing interval, moving objects give rise to blurred point spread functions, significant range migration and even potential aliasing of target signatures. The result is reduced target to clutter ratio (TCR) and poor detection performance. Successful detection of airborne targets thus requires compensation for potentially large target acceleration and velocity values observed over the comparatively long dwell times typical of practical SAR collection paradigms. This paper considers this problem and presents two main ideas to achieve this goal: a carefully constructed Moving Target Indicator (MTI) detection method implemented using real-world Ingara SAR data, and a theoretical ground clutter suppression method. The MTI detection method combines several well-known techniques for the flying target detection problem: interferometric processing, clutter suppression, and autofocus, and provides an extended acceleration phase compensation technique for highly accelerating targets such as planes. This proposed processing pipeline has been applied to experimental data of a plane during take off (a challenging Doppler unambiguous moving target), with the goal of continued detecting and tracking of this target. A generalised SAR signal model is presented that parameterises a flying moving target signature in terms of range and azimuthal target velocities and accelerations. Data driven approaches for estimating these motion parameters are examined and applied to experimental data acquired with the Ingara SAR sensor. The detection method was found to improve TCR by around 6 dB, along with superior detection and tracking performance. Following this, a theoretical study into suppressing ground clutter via multi-channel cross-track interferometry is investigated. Three separate ground clutter suppression methods, coherent subtraction, conventional beamforming, and minimum variance distortionless response (MVDR) beamformer, are presented then analysed using stochastic simulations. The MVDR adaptive beamformer method was found to provide the best performance for the scenario simulated.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12676","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12676","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The growing proliferation of synthetic aperture radar (SAR) sensors brings the tantalising prospect of extending their utility into ‘novel’ applications. One potential extension is the detection of fast moving and accelerating flying objects in SAR imagery. However, since SAR image formation typically assumes the scene to be static over the coherent processing interval, moving objects give rise to blurred point spread functions, significant range migration and even potential aliasing of target signatures. The result is reduced target to clutter ratio (TCR) and poor detection performance. Successful detection of airborne targets thus requires compensation for potentially large target acceleration and velocity values observed over the comparatively long dwell times typical of practical SAR collection paradigms. This paper considers this problem and presents two main ideas to achieve this goal: a carefully constructed Moving Target Indicator (MTI) detection method implemented using real-world Ingara SAR data, and a theoretical ground clutter suppression method. The MTI detection method combines several well-known techniques for the flying target detection problem: interferometric processing, clutter suppression, and autofocus, and provides an extended acceleration phase compensation technique for highly accelerating targets such as planes. This proposed processing pipeline has been applied to experimental data of a plane during take off (a challenging Doppler unambiguous moving target), with the goal of continued detecting and tracking of this target. A generalised SAR signal model is presented that parameterises a flying moving target signature in terms of range and azimuthal target velocities and accelerations. Data driven approaches for estimating these motion parameters are examined and applied to experimental data acquired with the Ingara SAR sensor. The detection method was found to improve TCR by around 6 dB, along with superior detection and tracking performance. Following this, a theoretical study into suppressing ground clutter via multi-channel cross-track interferometry is investigated. Three separate ground clutter suppression methods, coherent subtraction, conventional beamforming, and minimum variance distortionless response (MVDR) beamformer, are presented then analysed using stochastic simulations. The MVDR adaptive beamformer method was found to provide the best performance for the scenario simulated.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信