Fast Goodstein walks

IF 0.8 3区 数学 Q2 MATHEMATICS
David Fernández-Duque, Andreas Weiermann
{"title":"Fast Goodstein walks","authors":"David Fernández-Duque,&nbsp;Andreas Weiermann","doi":"10.1112/blms.13210","DOIUrl":null,"url":null,"abstract":"<p>We introduce a family <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>A</mi>\n <mi>k</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>k</mi>\n <mo>&lt;</mo>\n <mi>ω</mi>\n </mrow>\n </msub>\n <annotation>$(\\mathbb {A}_k)_{k&lt;\\omega }$</annotation>\n </semantics></math> of fast-growing functions based on <span></span><math>\n <semantics>\n <msub>\n <mi>ε</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\varepsilon _0$</annotation>\n </semantics></math> and use these to define a variant of the Goodstein process. We show that this variant terminates and that this fact is not provable in Kripke–Platek set theory (or other theories of Bachmann–Howard strength). We, moreover, show that this Goodstein process is of maximal length, so that any alternative Goodstein process based on the same fast-growing functions will also terminate.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 2","pages":"510-533"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13210","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13210","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a family ( A k ) k < ω $(\mathbb {A}_k)_{k<\omega }$ of fast-growing functions based on ε 0 $\varepsilon _0$ and use these to define a variant of the Goodstein process. We show that this variant terminates and that this fact is not provable in Kripke–Platek set theory (or other theories of Bachmann–Howard strength). We, moreover, show that this Goodstein process is of maximal length, so that any alternative Goodstein process based on the same fast-growing functions will also terminate.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信