Clutter rank estimation for the multistage Wiener filter

IF 1.4 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Rachel Gray, Elias Aboutanios, Luke Rosenberg, Josef Zuk
{"title":"Clutter rank estimation for the multistage Wiener filter","authors":"Rachel Gray,&nbsp;Elias Aboutanios,&nbsp;Luke Rosenberg,&nbsp;Josef Zuk","doi":"10.1049/rsn2.12689","DOIUrl":null,"url":null,"abstract":"<p>In airborne radar, reduced rank detection techniques are used when there are insufficient samples available for fully adaptive processing. This is the case in maritime radar, where the data can be both non-stationary and non-homogeneous. There are several approaches that have been proposed to address this problem. These include the single data set algorithms that eliminate the need for training data and reduced rank detectors such as principal components, cross-spectral metric and the multistage Wiener filter (MWF). This latter approach is superior to other rank reduction techniques in terms of computational efficiency and sample support requirements. In this paper, the authors propose an algorithm that determines the rank of the sea clutter and relates it to the number of stages in the MWF. The algorithm presented is formulated as a model order estimation problem that utilises the minimum description length (MDL). The authors present a computationally efficient implementation of the MDL and demonstrate its effectiveness using simulated data.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12689","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12689","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In airborne radar, reduced rank detection techniques are used when there are insufficient samples available for fully adaptive processing. This is the case in maritime radar, where the data can be both non-stationary and non-homogeneous. There are several approaches that have been proposed to address this problem. These include the single data set algorithms that eliminate the need for training data and reduced rank detectors such as principal components, cross-spectral metric and the multistage Wiener filter (MWF). This latter approach is superior to other rank reduction techniques in terms of computational efficiency and sample support requirements. In this paper, the authors propose an algorithm that determines the rank of the sea clutter and relates it to the number of stages in the MWF. The algorithm presented is formulated as a model order estimation problem that utilises the minimum description length (MDL). The authors present a computationally efficient implementation of the MDL and demonstrate its effectiveness using simulated data.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信