Time-Domain Spectral BFS Plate Element With Lobatto Basis for Wave Propagation Analysis

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Hela Ambati, Sascha Eisenträger, Santosh Kapuria
{"title":"Time-Domain Spectral BFS Plate Element With Lobatto Basis for Wave Propagation Analysis","authors":"Hela Ambati,&nbsp;Sascha Eisenträger,&nbsp;Santosh Kapuria","doi":"10.1002/nme.7617","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A computationally efficient spectral Kirchhoff plate element is presented for time-domain analysis of wave propagation at high frequencies in thin isotropic plates. It employs a <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {C}^1 $$</annotation>\n </semantics></math>-continuous spectral interpolation based on the modified bi-Hermite polynomials using the Gauss–Lobatto–Legendre (GLL) points as a basis with selective collocation of rotational and twisting degrees of freedom (DOFs) at element edge and corner nodes. The lowest order version of the proposed element reduces to the classical Bogner–Fox–Schmit (BFS) element for Kirchhoff plates. The GLL basis allows diagonalisation of the mass matrix using the nodal quadrature technique, which enhances the computational efficiency. The numerical properties of the proposed element are comprehensively evaluated, including the conditioning of the system matrices. Moreover, the effect of employing different numerical integration schemes and nodal sets is examined in both static and free vibration analyses. The effectiveness of the proposed element in wave propagation problems is evaluated by comparing its performance to the converged solutions achieved using the BFS element with a very fine mesh. Results demonstrate that the current element, without and even with mass matrix diagonalisation delivers exceptional accuracy while also exhibiting faster convergence and enhanced computational efficiency than the existing Kirchhoff plate elements.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7617","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A computationally efficient spectral Kirchhoff plate element is presented for time-domain analysis of wave propagation at high frequencies in thin isotropic plates. It employs a C 1 $$ {C}^1 $$ -continuous spectral interpolation based on the modified bi-Hermite polynomials using the Gauss–Lobatto–Legendre (GLL) points as a basis with selective collocation of rotational and twisting degrees of freedom (DOFs) at element edge and corner nodes. The lowest order version of the proposed element reduces to the classical Bogner–Fox–Schmit (BFS) element for Kirchhoff plates. The GLL basis allows diagonalisation of the mass matrix using the nodal quadrature technique, which enhances the computational efficiency. The numerical properties of the proposed element are comprehensively evaluated, including the conditioning of the system matrices. Moreover, the effect of employing different numerical integration schemes and nodal sets is examined in both static and free vibration analyses. The effectiveness of the proposed element in wave propagation problems is evaluated by comparing its performance to the converged solutions achieved using the BFS element with a very fine mesh. Results demonstrate that the current element, without and even with mass matrix diagonalisation delivers exceptional accuracy while also exhibiting faster convergence and enhanced computational efficiency than the existing Kirchhoff plate elements.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信