Bruno Vicari Stefani, Moonyong Kim, Matthew Wright, Anastasia Soeriyadi, Ilya Nyapshaev, Konstantin Emtsev, Brett Hallam
{"title":"Ring Defects Associated with Boron–Oxygen-Related Degradation in p-Type Silicon Heterojunction Solar Cells","authors":"Bruno Vicari Stefani, Moonyong Kim, Matthew Wright, Anastasia Soeriyadi, Ilya Nyapshaev, Konstantin Emtsev, Brett Hallam","doi":"10.1002/aesr.202400255","DOIUrl":null,"url":null,"abstract":"<p>\nSilicon heterojunction (SHJ) cell architectures, which have dominated silicon single-junction efficiency records for the past 10 years, are processed at relatively low temperatures, on the order of ≈250 °C. Recombination-active oxygen complexes in crystalline silicon, formed from interstitial oxygen (O<sub>i</sub>), typically require temperatures higher than this to form. Therefore, it is typically assumed that SHJ cells are immune to such defects. This contrasts with the high-temperature passivated emitter and rear cell (PERC) and tunneling oxide passivating contact (TOPCon) architectures, which can suffer from oxygen precipitates that are recombination active and difficult to predict. Herein, ring-like defects are observed in boron-doped p-type SHJ solar cells, which leads to a degradation of open-circuit voltage. It is shown that the spatial variation of this recombination activity is related to the boron–oxygen defect, the variation of which is likely due to the radial O<sub>i</sub> distribution. Although boron-doped p-type wafers are no longer the industry standard, the defect engineering of wafers for SHJ production, using high-temperature processing, is gaining significant interest. Such wafers can have an increased susceptibility to ring-like defects. Therefore, spatially inhomogeneous defects causing recombination may become increasingly relevant for SHJ cells.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 2","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400255","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon heterojunction (SHJ) cell architectures, which have dominated silicon single-junction efficiency records for the past 10 years, are processed at relatively low temperatures, on the order of ≈250 °C. Recombination-active oxygen complexes in crystalline silicon, formed from interstitial oxygen (Oi), typically require temperatures higher than this to form. Therefore, it is typically assumed that SHJ cells are immune to such defects. This contrasts with the high-temperature passivated emitter and rear cell (PERC) and tunneling oxide passivating contact (TOPCon) architectures, which can suffer from oxygen precipitates that are recombination active and difficult to predict. Herein, ring-like defects are observed in boron-doped p-type SHJ solar cells, which leads to a degradation of open-circuit voltage. It is shown that the spatial variation of this recombination activity is related to the boron–oxygen defect, the variation of which is likely due to the radial Oi distribution. Although boron-doped p-type wafers are no longer the industry standard, the defect engineering of wafers for SHJ production, using high-temperature processing, is gaining significant interest. Such wafers can have an increased susceptibility to ring-like defects. Therefore, spatially inhomogeneous defects causing recombination may become increasingly relevant for SHJ cells.
期刊介绍:
Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields.
In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including:
CAS: Chemical Abstracts Service (ACS)
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (Clarivate Analytics)
INSPEC (IET)
Web of Science (Clarivate Analytics).