Enhancing Oil Rejection in PVDF and PSF membranes: The Role of SiO2 NPs

IF 2.7 3区 化学 Q2 POLYMER SCIENCE
Dilek Senol-Arslan, Ayse Gul
{"title":"Enhancing Oil Rejection in PVDF and PSF membranes: The Role of SiO2 NPs","authors":"Dilek Senol-Arslan,&nbsp;Ayse Gul","doi":"10.1002/app.56590","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Oily water negatively affects both land and marine ecosystems. To combat this, membrane production can effectively treat oil waste and recycle over 90% of it. This study compares the influence of SiO<sub>2</sub> nanoparticles on oil rejection in two types of membranes: polyvinylidene fluoride (PVDF) and polysulfone (PSF). The SiO<sub>2</sub> NPs are characterized by FTIR, SEM analysis, and zeta potential measurements. SiO<sub>2</sub> NPs embedded PSF and PVDF membranes were characterized by FTIR, SEM analysis, contact angle, water permeability, oil rejection measurements, and recycling experiments. The results of the experiments showed that oil rejection reached maximum values of 92.2% for 2 wt% PSF/SiO<sub>2</sub>, and 94.1% for 2 wt% PVDF/SiO<sub>2</sub> membranes. The experimental results demonstrate that the incorporation of SiO₂ nanoparticles enhances the oil rejection efficiency of two distinct membrane types, exhibiting notable performance disparities contingent on the selected membrane material. This methodology achieves a recycling rate of over 90% for oil waste, signifying a substantial advancement in environmental protection and sustainable development. Consequently, the membrane production technique is regarded as an efficacious approach for the management and recycling of oil waste.</p>\n </div>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56590","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Oily water negatively affects both land and marine ecosystems. To combat this, membrane production can effectively treat oil waste and recycle over 90% of it. This study compares the influence of SiO2 nanoparticles on oil rejection in two types of membranes: polyvinylidene fluoride (PVDF) and polysulfone (PSF). The SiO2 NPs are characterized by FTIR, SEM analysis, and zeta potential measurements. SiO2 NPs embedded PSF and PVDF membranes were characterized by FTIR, SEM analysis, contact angle, water permeability, oil rejection measurements, and recycling experiments. The results of the experiments showed that oil rejection reached maximum values of 92.2% for 2 wt% PSF/SiO2, and 94.1% for 2 wt% PVDF/SiO2 membranes. The experimental results demonstrate that the incorporation of SiO₂ nanoparticles enhances the oil rejection efficiency of two distinct membrane types, exhibiting notable performance disparities contingent on the selected membrane material. This methodology achieves a recycling rate of over 90% for oil waste, signifying a substantial advancement in environmental protection and sustainable development. Consequently, the membrane production technique is regarded as an efficacious approach for the management and recycling of oil waste.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信