Trends in Sea-Air CO2 Fluxes and Sensitivities to Atmospheric Forcing Using an Extremely Randomized Trees Machine Learning Approach

IF 5.4 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Rik Wanninkhof, Joaquin Triñanes, Denis Pierrot, David R. Munro, Colm Sweeney, Amanda R. Fay
{"title":"Trends in Sea-Air CO2 Fluxes and Sensitivities to Atmospheric Forcing Using an Extremely Randomized Trees Machine Learning Approach","authors":"Rik Wanninkhof,&nbsp;Joaquin Triñanes,&nbsp;Denis Pierrot,&nbsp;David R. Munro,&nbsp;Colm Sweeney,&nbsp;Amanda R. Fay","doi":"10.1029/2024GB008315","DOIUrl":null,"url":null,"abstract":"<p>Monthly global sea-air CO<sub>2</sub> flux maps are created on a 1° by 1° grid from surface water fugacity of CO<sub>2</sub> (fCO<sub>2w</sub>) observations using an extremely randomized trees (ET) machine learning technique (AOML-ET) over the period 1998–2020. Global patterns and magnitudes of fCO<sub>2w</sub> from AOML-ET are consistent with other machine learning methods and with the updated climatology of Takahashi et al. (2009, https://doi.org/10.1016/j.dsr2.2008.12.009). However, the magnitude and trends of sea-air CO<sub>2</sub> fluxes are sensitive to the treatment of atmospheric forcing. In the default configuration of AOML-ET, the average global sea-air CO<sub>2</sub> flux is −1.70 PgC yr<sup>−1</sup> with a negative trend of −0.89 ± 0.19 PgC yr<sup>−1</sup> decade<sup>−1</sup>. The large negative trend is driven by a small uptake at the beginning of the record. This leads to increasing sea-air fCO<sub>2</sub> gradients over time, particularly at high latitudes. However, changing the target variable in AOML-ET from fCO<sub>2w</sub> to sea-air CO<sub>2</sub> fugacity difference, ∆fCO<sub>2</sub>, results in a lower negative trend of −0.51 PgC yr<sup>−1</sup> decade<sup>−1</sup>, though the average flux remains similar at −1.65 PgC yr<sup>−1</sup>. This trend is close to the consensus trend of ocean uptake from machine learning and models in the Global Carbon Budget of −0.46 ± 0.11 PgC yr<sup>−1</sup> decade<sup>−1</sup> switching to a gas transfer parameterization with weaker wind speed dependence reduces uptake by 60% but does not affect the trend. Substituting a spatially resolved marine air CO<sub>2</sub> mole fraction product for the zonally invariant marine boundary layer CO<sub>2</sub> product yields greater influx by up to 20% in the industrialized continental outflow regions.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008315","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008315","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Monthly global sea-air CO2 flux maps are created on a 1° by 1° grid from surface water fugacity of CO2 (fCO2w) observations using an extremely randomized trees (ET) machine learning technique (AOML-ET) over the period 1998–2020. Global patterns and magnitudes of fCO2w from AOML-ET are consistent with other machine learning methods and with the updated climatology of Takahashi et al. (2009, https://doi.org/10.1016/j.dsr2.2008.12.009). However, the magnitude and trends of sea-air CO2 fluxes are sensitive to the treatment of atmospheric forcing. In the default configuration of AOML-ET, the average global sea-air CO2 flux is −1.70 PgC yr−1 with a negative trend of −0.89 ± 0.19 PgC yr−1 decade−1. The large negative trend is driven by a small uptake at the beginning of the record. This leads to increasing sea-air fCO2 gradients over time, particularly at high latitudes. However, changing the target variable in AOML-ET from fCO2w to sea-air CO2 fugacity difference, ∆fCO2, results in a lower negative trend of −0.51 PgC yr−1 decade−1, though the average flux remains similar at −1.65 PgC yr−1. This trend is close to the consensus trend of ocean uptake from machine learning and models in the Global Carbon Budget of −0.46 ± 0.11 PgC yr−1 decade−1 switching to a gas transfer parameterization with weaker wind speed dependence reduces uptake by 60% but does not affect the trend. Substituting a spatially resolved marine air CO2 mole fraction product for the zonally invariant marine boundary layer CO2 product yields greater influx by up to 20% in the industrialized continental outflow regions.

Abstract Image

使用极端随机树机器学习方法的海洋-空气CO2通量趋势和对大气强迫的敏感性
使用极随机树(ET)机器学习技术(AOML-ET),根据1998-2020年期间地表水CO2逸度(fCO2w)观测数据,在1°× 1°网格上创建了每月全球海洋-空气CO2通量图。来自AOML-ET的fCO2w的全球模式和大小与其他机器学习方法以及Takahashi等人(2009,https://doi.org/10.1016/j.dsr2.2008.12.009)的最新气候学一致。然而,海洋-空气CO2通量的大小和趋势对大气强迫的处理很敏感。在AOML-ET默认配置下,全球平均海气CO2通量为- 1.70 PgC yr - 1,负向趋势为- 0.89±0.19 PgC yr - 1 decade - 1。大的负趋势是由记录开始时的小吸收所驱动的。随着时间的推移,这导致海洋-空气中二氧化碳梯度的增加,特别是在高纬度地区。然而,将AOML-ET的目标变量从fCO2w改变为海气CO2逸度差∆fCO2,其负趋势较低,为- 0.51 PgC yr - 1 decade - 1,尽管平均通量保持在- 1.65 PgC yr - 1。这一趋势接近机器学习和全球碳收支模型中海洋吸收的共识趋势- 0.46±0.11 PgC年- 1年- 10年- 1,切换到风速依赖性较弱的气体传输参数化可减少60%的吸收,但不影响趋势。在工业化大陆流出区,用空间分辨的海洋空气CO2摩尔分数产品代替纬向不变的海洋边界层CO2产品可使流入量增加多达20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信