Maximal dimensional subalgebras of general Cartan-type Lie algebras

IF 0.8 3区 数学 Q2 MATHEMATICS
Jason Bell, Lucas Buzaglo
{"title":"Maximal dimensional subalgebras of general Cartan-type Lie algebras","authors":"Jason Bell,&nbsp;Lucas Buzaglo","doi":"10.1112/blms.13216","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$\\mathbb {k}$</annotation>\n </semantics></math> be a field of characteristic zero and let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>W</mi>\n <mi>n</mi>\n </msub>\n <mo>=</mo>\n <mo>Der</mo>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mi>n</mi>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {W}_n = \\operatorname{Der}(\\mathbb {k}[x_1,\\ldots,x_n])$</annotation>\n </semantics></math> be the <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mtext>th</mtext>\n </mrow>\n <annotation>$n{\\text{th}}$</annotation>\n </semantics></math> general Cartan-type Lie algebra. In this paper, we study Lie subalgebras <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <msub>\n <mi>W</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathbb {W}_n$</annotation>\n </semantics></math> of maximal Gelfand–Kirillov (GK) dimension, that is, with <span></span><math>\n <semantics>\n <mrow>\n <mo>GKdim</mo>\n <mo>(</mo>\n <mi>L</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$\\operatorname{GKdim}(L) = n$</annotation>\n </semantics></math>.</p><p>For <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n = 1$</annotation>\n </semantics></math>, we completely classify such <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math>, proving a conjecture of the second author. As a corollary, we obtain a new proof that <span></span><math>\n <semantics>\n <msub>\n <mi>W</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\mathbb {W}_1$</annotation>\n </semantics></math> satisfies the Dixmier conjecture, in other words, <span></span><math>\n <semantics>\n <mrow>\n <mo>End</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>W</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>∖</mo>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n <mo>=</mo>\n <mo>Aut</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>W</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{End}(\\mathbb {W}_1) \\setminus \\lbrace 0\\rbrace = \\operatorname{Aut}(\\mathbb {W}_1)$</annotation>\n </semantics></math>, a result first shown by Du.</p><p>For arbitrary <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>, we show that if <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math> is a GK-dimension <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> subalgebra of <span></span><math>\n <semantics>\n <msub>\n <mi>W</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathbb {W}_n$</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mo>(</mo>\n <mi>L</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$U(L)$</annotation>\n </semantics></math> is not (left or right) noetherian.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 2","pages":"605-624"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13216","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13216","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let k $\mathbb {k}$ be a field of characteristic zero and let W n = Der ( k [ x 1 , , x n ] ) $\mathbb {W}_n = \operatorname{Der}(\mathbb {k}[x_1,\ldots,x_n])$ be the n th $n{\text{th}}$ general Cartan-type Lie algebra. In this paper, we study Lie subalgebras L $L$ of W n $\mathbb {W}_n$ of maximal Gelfand–Kirillov (GK) dimension, that is, with GKdim ( L ) = n $\operatorname{GKdim}(L) = n$ .

For n = 1 $n = 1$ , we completely classify such L $L$ , proving a conjecture of the second author. As a corollary, we obtain a new proof that W 1 $\mathbb {W}_1$ satisfies the Dixmier conjecture, in other words, End ( W 1 ) { 0 } = Aut ( W 1 ) $\operatorname{End}(\mathbb {W}_1) \setminus \lbrace 0\rbrace = \operatorname{Aut}(\mathbb {W}_1)$ , a result first shown by Du.

For arbitrary n $n$ , we show that if L $L$ is a GK-dimension n $n$ subalgebra of W n $\mathbb {W}_n$ , then U ( L ) $U(L)$ is not (left or right) noetherian.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信