The sparse circular law, revisited

IF 0.8 3区 数学 Q2 MATHEMATICS
Ashwin Sah, Julian Sahasrabudhe, Mehtaab Sawhney
{"title":"The sparse circular law, revisited","authors":"Ashwin Sah,&nbsp;Julian Sahasrabudhe,&nbsp;Mehtaab Sawhney","doi":"10.1112/blms.13199","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <msub>\n <mi>A</mi>\n <mi>n</mi>\n </msub>\n <annotation>$A_n$</annotation>\n </semantics></math> be an <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>×</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$n\\times n$</annotation>\n </semantics></math> matrix with iid entries distributed as Bernoulli random variables with parameter <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <msub>\n <mi>p</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$p = p_n$</annotation>\n </semantics></math>. Rudelson and Tikhomirov, in a beautiful and celebrated paper, show that the distribution of eigenvalues of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>A</mi>\n <mi>n</mi>\n </msub>\n <mo>·</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$A_n \\cdot (pn)^{-1/2}$</annotation>\n </semantics></math> is approximately uniform on the unit disk as <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$n\\rightarrow \\infty$</annotation>\n </semantics></math> as long as <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$pn \\rightarrow \\infty$</annotation>\n </semantics></math>, which is the natural necessary condition. In this paper, we give a much simpler proof of this result, in its full generality, using a perspective we developed in our recent proof of the existence of the limiting spectral law when <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mi>n</mi>\n </mrow>\n <annotation>$pn$</annotation>\n </semantics></math> is bounded. One feature of our proof is that it entirely avoids the use of <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math>-nets and, instead, proceeds by studying the evolution of the singular values of the shifted matrices <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>A</mi>\n <mi>n</mi>\n </msub>\n <mo>−</mo>\n <mi>z</mi>\n <mi>I</mi>\n </mrow>\n <annotation>$A_n-zI$</annotation>\n </semantics></math> as we incrementally expose the randomness in the matrix.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 2","pages":"330-358"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13199","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13199","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let A n $A_n$ be an n × n $n\times n$ matrix with iid entries distributed as Bernoulli random variables with parameter p = p n $p = p_n$ . Rudelson and Tikhomirov, in a beautiful and celebrated paper, show that the distribution of eigenvalues of A n · ( p n ) 1 / 2 $A_n \cdot (pn)^{-1/2}$ is approximately uniform on the unit disk as n $n\rightarrow \infty$ as long as p n $pn \rightarrow \infty$ , which is the natural necessary condition. In this paper, we give a much simpler proof of this result, in its full generality, using a perspective we developed in our recent proof of the existence of the limiting spectral law when p n $pn$ is bounded. One feature of our proof is that it entirely avoids the use of ε $\varepsilon$ -nets and, instead, proceeds by studying the evolution of the singular values of the shifted matrices A n z I $A_n-zI$ as we incrementally expose the randomness in the matrix.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信