Identification of a Novel Alkaloid Zj6-11 as a Potent Inhibitor of Influenza Virus Infection via Repression of Virus-Induced Mitochondria-Dependent Apoptosis

IF 6.8 3区 医学 Q1 VIROLOGY
Hanbai Liang, Ying Zhang, Wenhao Sun, Xiaomei Xiao, Xiwen Zhao, Bin Tan, Jian Zhang, Xun Song, Zhengdan He, Liang Ye
{"title":"Identification of a Novel Alkaloid Zj6-11 as a Potent Inhibitor of Influenza Virus Infection via Repression of Virus-Induced Mitochondria-Dependent Apoptosis","authors":"Hanbai Liang,&nbsp;Ying Zhang,&nbsp;Wenhao Sun,&nbsp;Xiaomei Xiao,&nbsp;Xiwen Zhao,&nbsp;Bin Tan,&nbsp;Jian Zhang,&nbsp;Xun Song,&nbsp;Zhengdan He,&nbsp;Liang Ye","doi":"10.1002/jmv.70230","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Influenza A virus (IAV) remains a major global public health threat, especially with the emergence of antiviral resistance, highlighting the urgent need for novel therapeutics. Alkaloids are known for their antiviral properties, and chemical synthesis has become a key strategy in developing new alkaloid compounds. In this study, we synthesized a series of novel alkaloids using the Ugi reaction and assessed their antiviral potential and mechanisms. Through screening and validation, Zj6-11 was identified as a promising compound that effectively inhibits IAV infection in vitro. Molecular docking and binding affinity assays showed that Zj6-11 binds with high affinity to IAV nucleoprotein (NP) and inhibits its interaction with nucleic acids. Further, in vitro nuclear translocation assays confirmed that Zj6-11 suppresses NP nuclear import. Mechanistically, Zj6-11 significantly inhibits IAV-induced apoptosis and mitigates mitochondrial membrane potential dysfunction. Zj6-11 also inhibits cytochrome c release, reduces the expression of cleaved Caspase-9 and Caspase-3, and suppresses IAV-induced apoptosis-inducing factor (Aif) expression, suppressing IAV-induced mitochondrial apoptosis. More importantly, Zj6-11 plays a crucial role in protecting mice from IAV infection and reducing IAV pathogenicity. Our study provides mechanistic insights into Zj6-11's control of IAV infection in vitro and in vivo, offering new perspectives for antiviral therapy development.</p></div>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"97 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmv.70230","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Influenza A virus (IAV) remains a major global public health threat, especially with the emergence of antiviral resistance, highlighting the urgent need for novel therapeutics. Alkaloids are known for their antiviral properties, and chemical synthesis has become a key strategy in developing new alkaloid compounds. In this study, we synthesized a series of novel alkaloids using the Ugi reaction and assessed their antiviral potential and mechanisms. Through screening and validation, Zj6-11 was identified as a promising compound that effectively inhibits IAV infection in vitro. Molecular docking and binding affinity assays showed that Zj6-11 binds with high affinity to IAV nucleoprotein (NP) and inhibits its interaction with nucleic acids. Further, in vitro nuclear translocation assays confirmed that Zj6-11 suppresses NP nuclear import. Mechanistically, Zj6-11 significantly inhibits IAV-induced apoptosis and mitigates mitochondrial membrane potential dysfunction. Zj6-11 also inhibits cytochrome c release, reduces the expression of cleaved Caspase-9 and Caspase-3, and suppresses IAV-induced apoptosis-inducing factor (Aif) expression, suppressing IAV-induced mitochondrial apoptosis. More importantly, Zj6-11 plays a crucial role in protecting mice from IAV infection and reducing IAV pathogenicity. Our study provides mechanistic insights into Zj6-11's control of IAV infection in vitro and in vivo, offering new perspectives for antiviral therapy development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Virology
Journal of Medical Virology 医学-病毒学
CiteScore
23.20
自引率
2.40%
发文量
777
审稿时长
1 months
期刊介绍: The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells. The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists. The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信