{"title":"Convergence of Damped Polarization Schemes for the FFT-Based Computational Homogenization of Inelastic Media With Pores","authors":"Elodie Donval, Matti Schneider","doi":"10.1002/nme.7632","DOIUrl":null,"url":null,"abstract":"<p>Porous microstructures represent a challenge for the convergence of FFT-based computational homogenization methods. In this contribution, we show that the damped Eyre–Milton iteration is linearly convergent for a class of nonlinear composites with a regular set of pores, provided the damping factor is chosen between zero and unity. First, we show that an abstract fixed-point method with non-expansive fixed-point operator and non-trivial damping converges linearly, provided the associated residual mapping satisfies a monotonicity condition on a closed subspace. Then, we transfer this result to the framework of polarization schemes and conclude the linear convergence of the damped Eyre–Milton scheme for porous materials. We present general arguments which apply to a class of nonlinear composites and mixed stress-strain loadings, as well. We show that the best contraction estimate is reached for a damping factor of <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$$ 1/2 $$</annotation>\n </semantics></math>, that is, for the polarization scheme of Michel–Moulinec–Suquet, and derive the corresponding optimal reference material. Our results generalize the recent work of Sab and co-workers who showed that an adaptively damped Eyre–Milton scheme leads to linear convergence for a class of linear composites with pores. Finally, we report on computational experiments which support our findings.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7632","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7632","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Porous microstructures represent a challenge for the convergence of FFT-based computational homogenization methods. In this contribution, we show that the damped Eyre–Milton iteration is linearly convergent for a class of nonlinear composites with a regular set of pores, provided the damping factor is chosen between zero and unity. First, we show that an abstract fixed-point method with non-expansive fixed-point operator and non-trivial damping converges linearly, provided the associated residual mapping satisfies a monotonicity condition on a closed subspace. Then, we transfer this result to the framework of polarization schemes and conclude the linear convergence of the damped Eyre–Milton scheme for porous materials. We present general arguments which apply to a class of nonlinear composites and mixed stress-strain loadings, as well. We show that the best contraction estimate is reached for a damping factor of , that is, for the polarization scheme of Michel–Moulinec–Suquet, and derive the corresponding optimal reference material. Our results generalize the recent work of Sab and co-workers who showed that an adaptively damped Eyre–Milton scheme leads to linear convergence for a class of linear composites with pores. Finally, we report on computational experiments which support our findings.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.