{"title":"Enhanced performance of secondary surveillance radar system in dense UAV environments using CDMA techniques","authors":"Haonan Chen, Rui Guo, Zengping Chen","doi":"10.1049/rsn2.12680","DOIUrl":null,"url":null,"abstract":"<p>In future battlefield scenarios, the high density of platforms often leads to multiple responses from existing secondary surveillance radar (SSR) systems, causing collision interference of response signals in the time domain. The frame slotted ALOHA (FSA) algorithm originally used by the system cannot ensure a high identification probability and has a long identification time. In response to these problems, this paper explores the problems of current SSR systems under the urgent need for precise multi-target identification in dense environments. It investigates how to integrate code division multiple access (CDMA) technology with the ALOHA algorithm to enhance the system's target identification probability. The authors propose an improved workflow and signal transceiver principles for the SSR system and validate the excellent performance of the SSR system in multi-target identification within dense environments through simulation experiments based on the proposed composite anti-collision algorithm.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12680","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12680","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In future battlefield scenarios, the high density of platforms often leads to multiple responses from existing secondary surveillance radar (SSR) systems, causing collision interference of response signals in the time domain. The frame slotted ALOHA (FSA) algorithm originally used by the system cannot ensure a high identification probability and has a long identification time. In response to these problems, this paper explores the problems of current SSR systems under the urgent need for precise multi-target identification in dense environments. It investigates how to integrate code division multiple access (CDMA) technology with the ALOHA algorithm to enhance the system's target identification probability. The authors propose an improved workflow and signal transceiver principles for the SSR system and validate the excellent performance of the SSR system in multi-target identification within dense environments through simulation experiments based on the proposed composite anti-collision algorithm.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.