{"title":"Global solutions for semilinear parabolic evolution problems with Hölder continuous nonlinearities","authors":"Bogdan-Vasile Matioc, Christoph Walker","doi":"10.1112/blms.13206","DOIUrl":null,"url":null,"abstract":"<p>It is shown that semilinear parabolic evolution equations <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>u</mi>\n <mo>′</mo>\n </msup>\n <mo>=</mo>\n <mi>A</mi>\n <mi>u</mi>\n <mo>+</mo>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$u^{\\prime }=Au+f(t,u)$</annotation>\n </semantics></math> featuring Hölder continuous nonlinearities <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>=</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$ f=f(t,u)$</annotation>\n </semantics></math> with at most linear growth possess global strong solutions for a general class of initial data. The abstract results are applied to a recent model describing front propagation in bushfires and in the context of a reaction–diffusion system.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 2","pages":"444-462"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13206","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13206","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is shown that semilinear parabolic evolution equations featuring Hölder continuous nonlinearities with at most linear growth possess global strong solutions for a general class of initial data. The abstract results are applied to a recent model describing front propagation in bushfires and in the context of a reaction–diffusion system.
研究表明,半线性抛物线演化方程 u ′ = A u + f ( t , u ) $u^{/prime }=Au+f(t,u)$ 具有霍尔德连续非线性 f = f ( t , u ) $ f=f(t,u)$ 且最多具有线性增长,对于一般初始数据具有全局强解。这些抽象结果被应用于一个描述灌木林火灾前沿传播的最新模型,以及一个反应扩散系统。