Sequential Maximal Updated Density Parameter Estimation for Dynamical Systems With Parameter Drift

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Carlos del-Castillo-Negrete, Rylan Spence, Troy Butler, Clint Dawson
{"title":"Sequential Maximal Updated Density Parameter Estimation for Dynamical Systems With Parameter Drift","authors":"Carlos del-Castillo-Negrete,&nbsp;Rylan Spence,&nbsp;Troy Butler,&nbsp;Clint Dawson","doi":"10.1002/nme.7618","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We present a novel method for generating sequential parameter estimates and quantifying epistemic uncertainty in dynamical systems within a data-consistent (DC) framework. The DC framework differs from traditional Bayesian approaches due to the incorporation of the push-forward of an initial density, which performs selective regularization in parameter directions not informed by the data in the resulting updated density. This extends a previous study that included the linear Gaussian theory within the DC framework and introduced the maximal updated density (MUD) estimate as an alternative to both least squares and maximum a posterior (MAP) estimates. In this work, we introduce algorithms for operational settings of MUD estimation in real- or near-real time where spatio-temporal datasets arrive in packets to provide updated estimates of parameters and identify potential parameter drift. Computational diagnostics within the DC framework prove critical for evaluating (1) the quality of the DC update and MUD estimate and (2) the detection of parameter value drift. The algorithms are applied to estimate (1) wind drag parameters in a high-fidelity storm surge model, (2) thermal diffusivity field for a heat conductivity problem, and (3) changing infection and incubation rates of an epidemiological model.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7618","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel method for generating sequential parameter estimates and quantifying epistemic uncertainty in dynamical systems within a data-consistent (DC) framework. The DC framework differs from traditional Bayesian approaches due to the incorporation of the push-forward of an initial density, which performs selective regularization in parameter directions not informed by the data in the resulting updated density. This extends a previous study that included the linear Gaussian theory within the DC framework and introduced the maximal updated density (MUD) estimate as an alternative to both least squares and maximum a posterior (MAP) estimates. In this work, we introduce algorithms for operational settings of MUD estimation in real- or near-real time where spatio-temporal datasets arrive in packets to provide updated estimates of parameters and identify potential parameter drift. Computational diagnostics within the DC framework prove critical for evaluating (1) the quality of the DC update and MUD estimate and (2) the detection of parameter value drift. The algorithms are applied to estimate (1) wind drag parameters in a high-fidelity storm surge model, (2) thermal diffusivity field for a heat conductivity problem, and (3) changing infection and incubation rates of an epidemiological model.

具有参数漂移的动力系统序列最大更新密度参数估计
我们提出了一种新的方法来产生序列参数估计和量化在数据一致(DC)框架内的动态系统的认知不确定性。DC框架与传统的贝叶斯方法不同,因为它结合了初始密度的前推,它在结果更新密度中的数据不告知的参数方向上执行选择性正则化。这扩展了先前的研究,该研究包括DC框架内的线性高斯理论,并引入了最大更新密度(MUD)估计,作为最小二乘法和最大后验(MAP)估计的替代方法。在这项工作中,我们引入了实时或近实时的MUD估计操作设置算法,其中时空数据集以数据包的形式到达,以提供更新的参数估计并识别潜在的参数漂移。DC框架内的计算诊断对于评估(1)DC更新和MUD估计的质量以及(2)参数值漂移的检测至关重要。该算法应用于估算(1)高保真风暴潮模型中的风阻参数,(2)导热问题的热扩散场,以及(3)流行病学模型的变化感染率和潜伏期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信