The Role of Inductive Electric Fields in Shaping the Morphology, Asymmetry, and Energy Content of the Storm-Time Ring Current

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Jianghuai Liu, Raluca Ilie, Michael W. Liemohn, Gábor Tóth
{"title":"The Role of Inductive Electric Fields in Shaping the Morphology, Asymmetry, and Energy Content of the Storm-Time Ring Current","authors":"Jianghuai Liu,&nbsp;Raluca Ilie,&nbsp;Michael W. Liemohn,&nbsp;Gábor Tóth","doi":"10.1029/2024JA033577","DOIUrl":null,"url":null,"abstract":"<p>The inductive component of the magnetospheric electric field, which is associated with the temporal change of magnetic field, provides an additional means of local plasma energization and transport in addition to the electrostatic counterpart. This study examines the detailed response of the inner magnetosphere to inductive electric fields and the associated electric-driven convection corresponding to different solar wind conditions. A novel modeling capability is employed to self-consistently simulate the electromagnetic and plasma environment of the entire magnetospheric cavity. The explicit separation of the electric field by source (inductive vs. electrostatic) and subsequent implementation of inductive effects in the ring current model allow us to investigate, for the first time, the effect of the inductive electric field on the kinetics and evolution of the ring current system. The simulation results presented in this study demonstrate that the inductive component of the electric field is capable of providing an additional source for long-lasting plasma drifts, which in turn significantly alter the trajectories of both thermal and energetic particles. Such changes in the plasma drift, which arise due to the inductive electric fields, further reshape the storm-time ring current morphology and alter the degree of the ring current asymmetry, as well as the timing and the peak of the ion pressure. The total ion energy is increasing at a faster rate than the supply of energetic ions to the ring current, suggesting that the inductive electric field provides effective and accumulative local energization for the trapped ring current population without confining additional particles.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033577","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033577","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The inductive component of the magnetospheric electric field, which is associated with the temporal change of magnetic field, provides an additional means of local plasma energization and transport in addition to the electrostatic counterpart. This study examines the detailed response of the inner magnetosphere to inductive electric fields and the associated electric-driven convection corresponding to different solar wind conditions. A novel modeling capability is employed to self-consistently simulate the electromagnetic and plasma environment of the entire magnetospheric cavity. The explicit separation of the electric field by source (inductive vs. electrostatic) and subsequent implementation of inductive effects in the ring current model allow us to investigate, for the first time, the effect of the inductive electric field on the kinetics and evolution of the ring current system. The simulation results presented in this study demonstrate that the inductive component of the electric field is capable of providing an additional source for long-lasting plasma drifts, which in turn significantly alter the trajectories of both thermal and energetic particles. Such changes in the plasma drift, which arise due to the inductive electric fields, further reshape the storm-time ring current morphology and alter the degree of the ring current asymmetry, as well as the timing and the peak of the ion pressure. The total ion energy is increasing at a faster rate than the supply of energetic ions to the ring current, suggesting that the inductive electric field provides effective and accumulative local energization for the trapped ring current population without confining additional particles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信