Personalized Recommendation Method Based on Rating Matrix and Review Text

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shiru Wang, Wenna Du, Amran Bhuiyan, Zehua Chen
{"title":"Personalized Recommendation Method Based on Rating Matrix and Review Text","authors":"Shiru Wang,&nbsp;Wenna Du,&nbsp;Amran Bhuiyan,&nbsp;Zehua Chen","doi":"10.1111/coin.70024","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In recent years, the algorithm based on review text has been widely used in recommendation systems, which can help mitigate the effect of sparsity in rating data within recommender algorithms. Existing methods typically employ a uniform model for capturing user and item features, but they are limited to the shallow feature level, and the user's personalized preferences and deep features of the item have not been fully explored, which may affect the relationship between the two representations learned by the model. The deeper relationship between them will affect the prediction results. Consequently, we propose a personalized recommendation method based on the rating matrix and review text denoted PRM-RR, which is used to deeply mine user preferences and item characteristics. In the process of processing the comment text, we employ ALBERT to obtain vector representations for the words present in the review text firstly. Subsequently, taking into account that significant words and reviews bear relevance not solely to the review text but also to the user's individualized preferences, the proposed personalized attention module synergizes the user's personalized preference information with the review text vector, thereby engendering an enriched review-based user representation. The fusion of the user's review representation and rating representation is accomplished through the feature fusion module using cross-modal attention, yielding the final user representation. Lastly, we employ a factorization machine to predict the user's rating for the item, thereby facilitating the recommendation process. Experimental results on three benchmark datasets show that our method outperforms the baseline algorithm in all cases, demonstrating that our method effectively improves the performance of recommendations. The code is available at https://github.com/ZehuaChenLab/PRM-RR.</p>\n </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70024","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the algorithm based on review text has been widely used in recommendation systems, which can help mitigate the effect of sparsity in rating data within recommender algorithms. Existing methods typically employ a uniform model for capturing user and item features, but they are limited to the shallow feature level, and the user's personalized preferences and deep features of the item have not been fully explored, which may affect the relationship between the two representations learned by the model. The deeper relationship between them will affect the prediction results. Consequently, we propose a personalized recommendation method based on the rating matrix and review text denoted PRM-RR, which is used to deeply mine user preferences and item characteristics. In the process of processing the comment text, we employ ALBERT to obtain vector representations for the words present in the review text firstly. Subsequently, taking into account that significant words and reviews bear relevance not solely to the review text but also to the user's individualized preferences, the proposed personalized attention module synergizes the user's personalized preference information with the review text vector, thereby engendering an enriched review-based user representation. The fusion of the user's review representation and rating representation is accomplished through the feature fusion module using cross-modal attention, yielding the final user representation. Lastly, we employ a factorization machine to predict the user's rating for the item, thereby facilitating the recommendation process. Experimental results on three benchmark datasets show that our method outperforms the baseline algorithm in all cases, demonstrating that our method effectively improves the performance of recommendations. The code is available at https://github.com/ZehuaChenLab/PRM-RR.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信