The ongoing rise in the incidences of breast cancer cases has concerned medical and scientific personnel around the world. Adequate treatment of cancer predominantly relies on the pertinent diagnosis of the type of cancer as well as other molecular and cellular details at the initial stage only. Surprisingly, up till now, there is no single, self-reliant imaging modality that helps to systematically find out the anatomical and functional events taking place inside the body. This resulted in the advent of the multimodal imaging concept, which encompasses the integration of complementary imaging modalities by designing multimodal imaging probes. Gold nanorods (GNRs) are extremely popular and effective nanoparticles for multimodal bioimaging due to their unique properties. Researchers have designed varieties of stable and biocompatible GNR-based probes for targeted and nontargeted multimodal imaging of breast cancer. However, there is a lack of investigations on the in vivo fate and the toxicity of GNRs. Thus, their preclinical to clinical translation can be attained by comprehensively determining the in vivo fate and toxicity of GNRs. The review provides details about the GNRs-based nanoprobes fabricated so far for breast cancer imaging, which, by consequent studies, can be taken up to clinical usage.