Stable polynomials and admissible numerators in product domains

IF 0.8 3区 数学 Q2 MATHEMATICS
Kelly Bickel, Greg Knese, James Eldred Pascoe, Alan Sola
{"title":"Stable polynomials and admissible numerators in product domains","authors":"Kelly Bickel,&nbsp;Greg Knese,&nbsp;James Eldred Pascoe,&nbsp;Alan Sola","doi":"10.1112/blms.13201","DOIUrl":null,"url":null,"abstract":"<p>Given a polynomial <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> with no zeros in the polydisk, or equivalently the poly-upper half-plane, we study the problem of determining the ideal of polynomials <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math> with the property that the rational function <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>/</mo>\n <mi>p</mi>\n </mrow>\n <annotation>$q/p$</annotation>\n </semantics></math> is bounded near a boundary zero of <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. We give a complete description of this ideal of numerators in the case where the zero set of <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> is smooth and satisfies a nondegeneracy condition. We also give a description of the ideal in terms of an integral closure when <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> has an isolated zero on the distinguished boundary. Constructions of multivariate stable polynomials are presented to illustrate sharpness of our results and necessity of our assumptions.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 2","pages":"377-394"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13201","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13201","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a polynomial p $p$ with no zeros in the polydisk, or equivalently the poly-upper half-plane, we study the problem of determining the ideal of polynomials q $q$ with the property that the rational function q / p $q/p$ is bounded near a boundary zero of p $p$ . We give a complete description of this ideal of numerators in the case where the zero set of p $p$ is smooth and satisfies a nondegeneracy condition. We also give a description of the ideal in terms of an integral closure when p $p$ has an isolated zero on the distinguished boundary. Constructions of multivariate stable polynomials are presented to illustrate sharpness of our results and necessity of our assumptions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信