Lipschitz-free spaces over strongly countable-dimensional spaces and approximation properties

IF 0.8 3区 数学 Q2 MATHEMATICS
Filip Talimdjioski
{"title":"Lipschitz-free spaces over strongly countable-dimensional spaces and approximation properties","authors":"Filip Talimdjioski","doi":"10.1112/blms.13200","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> be a compact, metrisable and strongly countable-dimensional topological space. Let <span></span><math>\n <semantics>\n <msup>\n <mi>M</mi>\n <mi>T</mi>\n </msup>\n <annotation>$\\mathcal {M}^T$</annotation>\n </semantics></math> be the set of all metrics <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> compatible with its topology, and equip <span></span><math>\n <semantics>\n <msup>\n <mi>M</mi>\n <mi>T</mi>\n </msup>\n <annotation>$\\mathcal {M}^T$</annotation>\n </semantics></math> with the topology of uniform convergence, where the metrics are regarded as functions on <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mn>2</mn>\n </msup>\n <annotation>$T^2$</annotation>\n </semantics></math>. We prove that the set <span></span><math>\n <semantics>\n <msup>\n <mi>A</mi>\n <mrow>\n <mi>T</mi>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <annotation>$\\mathcal {A}^{T,1}$</annotation>\n </semantics></math> of metrics <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>∈</mo>\n <msup>\n <mi>M</mi>\n <mi>T</mi>\n </msup>\n </mrow>\n <annotation>$d\\in \\mathcal {M}^T$</annotation>\n </semantics></math> for which the Lipschitz-free space <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>T</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {F}(T,d)$</annotation>\n </semantics></math> has the metric approximation property is residual in <span></span><math>\n <semantics>\n <msup>\n <mi>M</mi>\n <mi>T</mi>\n </msup>\n <annotation>$\\mathcal {M}^T$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 2","pages":"359-376"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13200","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13200","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let T $T$ be a compact, metrisable and strongly countable-dimensional topological space. Let M T $\mathcal {M}^T$ be the set of all metrics d $d$ on T $T$ compatible with its topology, and equip M T $\mathcal {M}^T$ with the topology of uniform convergence, where the metrics are regarded as functions on T 2 $T^2$ . We prove that the set A T , 1 $\mathcal {A}^{T,1}$ of metrics d M T $d\in \mathcal {M}^T$ for which the Lipschitz-free space F ( T , d ) $\mathcal {F}(T,d)$ has the metric approximation property is residual in M T $\mathcal {M}^T$ .

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信