Maciej Jedynak, Emahnuel Troisi Lopez, Antonella Romano, Viktor Jirsa, Olivier David, Pierpaolo Sorrentino
{"title":"Intermodal Consistency of Whole-Brain Connectivity and Signal Propagation Delays","authors":"Maciej Jedynak, Emahnuel Troisi Lopez, Antonella Romano, Viktor Jirsa, Olivier David, Pierpaolo Sorrentino","doi":"10.1002/hbm.70093","DOIUrl":null,"url":null,"abstract":"<p>Measuring propagation of perturbations across the human brain and their transmission delays is critical for network neuroscience, but it is a challenging problem that still requires advancement. Here, we compare results from a recently introduced, noninvasive technique of functional delays estimation from source-reconstructed electro/magnetoencephalography, to the corresponding findings from a large dataset of cortico-cortical evoked potentials estimated from intracerebral stimulations of patients suffering from pharmaco-resistant epilepsies. The two methods yield significantly similar probabilistic connectivity maps and signal propagation delays, in both cases characterized with Pearson correlations greater than 0.5 (when grouping by stimulated parcel is applied for delays). This similarity suggests a correspondence between the mechanisms underpinning the propagation of spontaneously generated scale-free perturbations (i.e., neuronal avalanches observed in resting state activity studied using magnetoencephalography) and the spreading of cortico-cortical evoked potentials. This manuscript provides evidence for the accuracy of the estimate of functional delays obtained noninvasively from reconstructed sources.</p><p>Conversely, our findings show that estimates obtained from externally induced perturbations in patients capture physiological activities in healthy subjects. In conclusion, this manuscript constitutes a mutual validation between two modalities, broadening their scope of applicability and interpretation. Importantly, the capability to measure delays noninvasively (as per MEG) paves the way for the inclusion of functional delays in personalized large-scale brain models as well as in diagnostic and prognostic algorithms.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70093","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70093","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Measuring propagation of perturbations across the human brain and their transmission delays is critical for network neuroscience, but it is a challenging problem that still requires advancement. Here, we compare results from a recently introduced, noninvasive technique of functional delays estimation from source-reconstructed electro/magnetoencephalography, to the corresponding findings from a large dataset of cortico-cortical evoked potentials estimated from intracerebral stimulations of patients suffering from pharmaco-resistant epilepsies. The two methods yield significantly similar probabilistic connectivity maps and signal propagation delays, in both cases characterized with Pearson correlations greater than 0.5 (when grouping by stimulated parcel is applied for delays). This similarity suggests a correspondence between the mechanisms underpinning the propagation of spontaneously generated scale-free perturbations (i.e., neuronal avalanches observed in resting state activity studied using magnetoencephalography) and the spreading of cortico-cortical evoked potentials. This manuscript provides evidence for the accuracy of the estimate of functional delays obtained noninvasively from reconstructed sources.
Conversely, our findings show that estimates obtained from externally induced perturbations in patients capture physiological activities in healthy subjects. In conclusion, this manuscript constitutes a mutual validation between two modalities, broadening their scope of applicability and interpretation. Importantly, the capability to measure delays noninvasively (as per MEG) paves the way for the inclusion of functional delays in personalized large-scale brain models as well as in diagnostic and prognostic algorithms.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.