Performance Investigation of a Cabin Thermal Management System for Electric Vehicles Based on R290 Refrigerant

IF 4.3 3区 工程技术 Q2 ENERGY & FUELS
Jiahao Zhao, Zihao Luo, Yifei Zhang, Abubakar Unguwanrimi Yakubu, Xuanhong Ye, Qi Jiang, Shusheng Xiong, Chenbo Xia
{"title":"Performance Investigation of a Cabin Thermal Management System for Electric Vehicles Based on R290 Refrigerant","authors":"Jiahao Zhao,&nbsp;Zihao Luo,&nbsp;Yifei Zhang,&nbsp;Abubakar Unguwanrimi Yakubu,&nbsp;Xuanhong Ye,&nbsp;Qi Jiang,&nbsp;Shusheng Xiong,&nbsp;Chenbo Xia","doi":"10.1155/er/9270883","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Electric vehicle (EV) thermal management systems (TMSs) face a critical challenge in adopting environmentally friendly refrigerants, essential for adaptability, thermal safety, driving range optimization, and passenger comfort across wide temperature ranges. This study investigates the use of R290, a low-cost and environmentally friendly refrigerant, in a secondary-loop-based TMS. A system test bench was established to validate the system performance experimentally, and a comparison was made with the system using R134a. The experimental results show that the R290 charge amount is approximately 50% of that of R134a. Under low-temperature heating condition (0°C), R290 demonstrates significant performance advantages, with heating capacity and coefficient of performance (COP) increasing by up to 67.6% and 36%, respectively, compared to R134a. At extremely low temperatures (−20°C), R290 achieves a COP of 1.24, further showcasing its superior heating performance. Under high-temperature cooling conditions (35 and 43°C), R290 exhibits slightly lower cooling capacity compared to R134a; however, its performance remains sufficient to meet the operational requirements of a TMS. In summary, the proposed TMS using R290 as the refrigerant demonstrates excellent performance and promising potential for application in EVs across a wide range of operating conditions.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/9270883","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/9270883","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Electric vehicle (EV) thermal management systems (TMSs) face a critical challenge in adopting environmentally friendly refrigerants, essential for adaptability, thermal safety, driving range optimization, and passenger comfort across wide temperature ranges. This study investigates the use of R290, a low-cost and environmentally friendly refrigerant, in a secondary-loop-based TMS. A system test bench was established to validate the system performance experimentally, and a comparison was made with the system using R134a. The experimental results show that the R290 charge amount is approximately 50% of that of R134a. Under low-temperature heating condition (0°C), R290 demonstrates significant performance advantages, with heating capacity and coefficient of performance (COP) increasing by up to 67.6% and 36%, respectively, compared to R134a. At extremely low temperatures (−20°C), R290 achieves a COP of 1.24, further showcasing its superior heating performance. Under high-temperature cooling conditions (35 and 43°C), R290 exhibits slightly lower cooling capacity compared to R134a; however, its performance remains sufficient to meet the operational requirements of a TMS. In summary, the proposed TMS using R290 as the refrigerant demonstrates excellent performance and promising potential for application in EVs across a wide range of operating conditions.

Abstract Image

基于R290制冷剂的电动汽车客舱热管理系统性能研究
电动汽车(EV)热管理系统(tms)面临着采用环保制冷剂的严峻挑战,这对汽车在宽温度范围内的适应性、热安全性、行驶里程优化和乘客舒适度至关重要。本研究调查了R290(一种低成本、环保的制冷剂)在二次循环TMS中的使用。建立了系统试验台,对系统性能进行了实验验证,并与R134a系统进行了对比。实验结果表明,R290的充电量约为R134a的50%。在低温加热条件下(0℃),R290表现出明显的性能优势,其热容量和性能系数(COP)分别比R134a提高了67.6%和36%。在极低温度(- 20°C)下,R290的COP为1.24,进一步展示了其优越的加热性能。在高温冷却条件下(35℃和43℃),R290的冷却能力略低于R134a;然而,它的性能仍然足以满足TMS的操作要求。综上所述,采用R290作为制冷剂的TMS表现出优异的性能,在广泛的操作条件下有望应用于电动汽车。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Energy Research
International Journal of Energy Research 工程技术-核科学技术
CiteScore
9.80
自引率
8.70%
发文量
1170
审稿时长
3.1 months
期刊介绍: The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability. IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents: -Biofuels and alternatives -Carbon capturing and storage technologies -Clean coal technologies -Energy conversion, conservation and management -Energy storage -Energy systems -Hybrid/combined/integrated energy systems for multi-generation -Hydrogen energy and fuel cells -Hydrogen production technologies -Micro- and nano-energy systems and technologies -Nuclear energy -Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass) -Smart energy system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信