Unveiling the dynamic interactions of gluten–starch–water in frozen dough: An in-depth review

IF 12 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Mohsin Rasheed, Xiangqi Fan, Boli Guo, Jikai Jiang, Ming Li, Yingquan Zhang, Bo Zhang, Yutong Cui
{"title":"Unveiling the dynamic interactions of gluten–starch–water in frozen dough: An in-depth review","authors":"Mohsin Rasheed,&nbsp;Xiangqi Fan,&nbsp;Boli Guo,&nbsp;Jikai Jiang,&nbsp;Ming Li,&nbsp;Yingquan Zhang,&nbsp;Bo Zhang,&nbsp;Yutong Cui","doi":"10.1111/1541-4337.70120","DOIUrl":null,"url":null,"abstract":"<p>In recent decades, frozen dough has become an attractive means of preserving and offering the convenience of fresh-tasting foods while retaining their nutritional benefits. However, the frozen dough industry still faces significant challenges related to processing, freezing, and storage that affect the dough's quality and stability during thawing. Understanding the complex interactions between proteins (gluten, glutenin, gliadin, and glutenin macropolymers), starch dynamics (gelatinization and retrogradation), and water distribution—particularly how ice crystals interact with the gluten–starch matrix—is essential for improving frozen dough quality. This review also delves into the rheological properties resulting from the interplay of these components, emphasizing their collective impact on dough texture and stability. Additionally, it explores various freezing mechanisms and innovative strategies to reduce freeze damage, as well as practical challenges in translating theoretical insights into industrial applications. Finally, it proposes future strategies for improving the shelf life and quality of frozen dough by optimizing freezing methods and water distribution. Through a comprehensive synthesis of current literature, this review underscores the critical importance of gluten–starch–water interactions in frozen dough and highlights promising strategies for enhancing product performance and quality.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 2","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70120","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent decades, frozen dough has become an attractive means of preserving and offering the convenience of fresh-tasting foods while retaining their nutritional benefits. However, the frozen dough industry still faces significant challenges related to processing, freezing, and storage that affect the dough's quality and stability during thawing. Understanding the complex interactions between proteins (gluten, glutenin, gliadin, and glutenin macropolymers), starch dynamics (gelatinization and retrogradation), and water distribution—particularly how ice crystals interact with the gluten–starch matrix—is essential for improving frozen dough quality. This review also delves into the rheological properties resulting from the interplay of these components, emphasizing their collective impact on dough texture and stability. Additionally, it explores various freezing mechanisms and innovative strategies to reduce freeze damage, as well as practical challenges in translating theoretical insights into industrial applications. Finally, it proposes future strategies for improving the shelf life and quality of frozen dough by optimizing freezing methods and water distribution. Through a comprehensive synthesis of current literature, this review underscores the critical importance of gluten–starch–water interactions in frozen dough and highlights promising strategies for enhancing product performance and quality.

揭示谷蛋白-淀粉-水在冷冻面团中的动态相互作用:深入综述
近几十年来,冷冻面团已成为一种有吸引力的保存和提供新鲜口味的食物的便利,同时保留其营养价值的手段。然而,冷冻面团行业仍然面临着与加工、冷冻和储存相关的重大挑战,这些挑战会影响面团在解冻过程中的质量和稳定性。了解蛋白质(谷蛋白、谷蛋白、麦胶蛋白和谷蛋白高分子聚合物)、淀粉动力学(糊化和退化)和水分布之间的复杂相互作用,特别是冰晶如何与谷蛋白-淀粉基质相互作用,对于提高冷冻面团质量至关重要。这篇综述还深入研究了这些成分的相互作用所产生的流变特性,强调了它们对面团质地和稳定性的共同影响。此外,它还探讨了各种冻结机制和创新策略,以减少冻害,以及将理论见解转化为工业应用的实际挑战。最后,提出了通过优化冷冻方法和水分分配来提高冷冻面团保质期和质量的未来策略。通过对现有文献的全面综合,本综述强调了冷冻面团中麸质-淀粉-水相互作用的重要性,并强调了提高产品性能和质量的有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.20
自引率
2.70%
发文量
182
期刊介绍: Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology. CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results. Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity. The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信