Brianna M. Hibner, Marjorie D. Cantine, Elizabeth J. Trower, Jacqueline E. Dodd, Maya L. Gomes
{"title":"How to Make a Rock in 150 Days: Observations of Biofilms Promoting Rapid Beachrock Formation","authors":"Brianna M. Hibner, Marjorie D. Cantine, Elizabeth J. Trower, Jacqueline E. Dodd, Maya L. Gomes","doi":"10.1111/gbi.70009","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Beachrock is a type of carbonate-cemented rock that forms via rapid cementation in the intertidal zone. Beachrock is a valuable geological tool as an indicator of paleoshorelines and may protect shorelines from erosion. Previous studies present a range of hypotheses about the processes enabling rapid beachrock formation, which span purely physicochemical mechanisms to a significant role for microbially mediated carbonate precipitation. We designed a set of in situ field experiments to explore the rates and mechanisms of beachrock formation on Little Ambergris Cay (Turks and Caicos Islands). Our field site has evidence for rapid beachrock cementation, including the incorporation of 20th century anthropogenic detritus into beachrock. We deployed pouches of sterilized ooid sand in the upper intertidal zone and assessed the extent of cementation and biofilm development after durations of 4 days, 2.5 months, and 5 months. We observed incipient meniscus cements after only 4 days of incubation in the field, suggesting that physicochemical processes are important in driving initial cementation. After 2.5 months, we observed substantial biofilm colonization on our experimental substrates, with interwoven networks of <i>Halomicronema</i> filaments binding clusters of ooids to the nylon pouches. After 5 months, we observed incipient beachrock formation in the form of coherent aggregates of ooids up to 1 cm in diameter, bound together by both networks of microbial filaments and incipient cements. We interpret that the cyanobacteria-dominated beachrock biofilm community on Little Ambergris Cay plays an important role in beachrock formation through the physical stabilization of sediment as cementation proceeds. Together, this combination of physicochemical and microbial mechanisms enables fresh rock to form in as little as 150 days.</p>\n </div>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"23 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.70009","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Beachrock is a type of carbonate-cemented rock that forms via rapid cementation in the intertidal zone. Beachrock is a valuable geological tool as an indicator of paleoshorelines and may protect shorelines from erosion. Previous studies present a range of hypotheses about the processes enabling rapid beachrock formation, which span purely physicochemical mechanisms to a significant role for microbially mediated carbonate precipitation. We designed a set of in situ field experiments to explore the rates and mechanisms of beachrock formation on Little Ambergris Cay (Turks and Caicos Islands). Our field site has evidence for rapid beachrock cementation, including the incorporation of 20th century anthropogenic detritus into beachrock. We deployed pouches of sterilized ooid sand in the upper intertidal zone and assessed the extent of cementation and biofilm development after durations of 4 days, 2.5 months, and 5 months. We observed incipient meniscus cements after only 4 days of incubation in the field, suggesting that physicochemical processes are important in driving initial cementation. After 2.5 months, we observed substantial biofilm colonization on our experimental substrates, with interwoven networks of Halomicronema filaments binding clusters of ooids to the nylon pouches. After 5 months, we observed incipient beachrock formation in the form of coherent aggregates of ooids up to 1 cm in diameter, bound together by both networks of microbial filaments and incipient cements. We interpret that the cyanobacteria-dominated beachrock biofilm community on Little Ambergris Cay plays an important role in beachrock formation through the physical stabilization of sediment as cementation proceeds. Together, this combination of physicochemical and microbial mechanisms enables fresh rock to form in as little as 150 days.
期刊介绍:
The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time.
Geobiology invites submission of high-quality articles in the following areas:
Origins and evolution of life
Co-evolution of the atmosphere, hydrosphere and biosphere
The sedimentary rock record and geobiology of critical intervals
Paleobiology and evolutionary ecology
Biogeochemistry and global elemental cycles
Microbe-mineral interactions
Biomarkers
Molecular ecology and phylogenetics.