ELoran signal message recognition algorithm based on GTCN-transformer

IF 1.4 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Kai Zhang, Fan Yang, Weidong Wang, Bingqian Wang
{"title":"ELoran signal message recognition algorithm based on GTCN-transformer","authors":"Kai Zhang,&nbsp;Fan Yang,&nbsp;Weidong Wang,&nbsp;Bingqian Wang","doi":"10.1049/rsn2.12688","DOIUrl":null,"url":null,"abstract":"<p>The Enhanced Long Range Navigation (eLoran) system serves as a crucial backup to the Global Navigation Satellite System (GNSS), leveraging advantages, such as low signal frequency, high transmitter power, and stable propagation distance. However, the prevailing demodulation techniques employed by the eLoran system, which are largely based on conventional digital signal processing, are susceptible to substantial inaccuracies when confronted with intense interference and complex environmental conditions. This paper introduces a novel GTCN-Transformer network designed for the specific task of recognising message in eLoran pulse group signal. The network is constructed by enhancing the architecture of Temporal Convolutional Networks (TCN) and integrating the Transformer mechanism. In order to extract significant features from the pulse group signal, a sequence dataset was obtained by using cepstral analysis. Subsequently, the GTCN-Transformer network is deployed to recognise the message contained within the eLoran pulse group signal. The experimental results demonstrate that the GTCN-Transformer network achieves a recognition accuracy of over 95% for eLoran signal message information when the SNR exceeds 10 dB, even in the presence of sky-wave and cross-interference signals. Moreover, a comparative analysis with recurrent neural network (RNN) reveals that the GTCN-Transformer network outperforms these architectures in terms of recognition accuracy.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12688","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12688","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The Enhanced Long Range Navigation (eLoran) system serves as a crucial backup to the Global Navigation Satellite System (GNSS), leveraging advantages, such as low signal frequency, high transmitter power, and stable propagation distance. However, the prevailing demodulation techniques employed by the eLoran system, which are largely based on conventional digital signal processing, are susceptible to substantial inaccuracies when confronted with intense interference and complex environmental conditions. This paper introduces a novel GTCN-Transformer network designed for the specific task of recognising message in eLoran pulse group signal. The network is constructed by enhancing the architecture of Temporal Convolutional Networks (TCN) and integrating the Transformer mechanism. In order to extract significant features from the pulse group signal, a sequence dataset was obtained by using cepstral analysis. Subsequently, the GTCN-Transformer network is deployed to recognise the message contained within the eLoran pulse group signal. The experimental results demonstrate that the GTCN-Transformer network achieves a recognition accuracy of over 95% for eLoran signal message information when the SNR exceeds 10 dB, even in the presence of sky-wave and cross-interference signals. Moreover, a comparative analysis with recurrent neural network (RNN) reveals that the GTCN-Transformer network outperforms these architectures in terms of recognition accuracy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信