Toward Carbon-Negative Methanol Production from Biogas: Intensified Membrane Reactor

IF 3.8 3区 化学 Q2 CHEMISTRY, PHYSICAL
ChemCatChem Pub Date : 2024-11-06 DOI:10.1002/cctc.202400698
Dr. Arash Yoosefdoost, Omid Jazani, Prof. Dr. Simona Liguori, Dr. Anindita Das, Prof. Dr. Rafael M. Santos
{"title":"Toward Carbon-Negative Methanol Production from Biogas: Intensified Membrane Reactor","authors":"Dr. Arash Yoosefdoost,&nbsp;Omid Jazani,&nbsp;Prof. Dr. Simona Liguori,&nbsp;Dr. Anindita Das,&nbsp;Prof. Dr. Rafael M. Santos","doi":"10.1002/cctc.202400698","DOIUrl":null,"url":null,"abstract":"<p>The modern world's major challenges, such as global warming, air pollution, and increasing energy demands, escalate the importance of sustainable development and transition toward renewables using innovative and environmentally friendly solutions, such as intensifying chemical processes, to reduce carbon footprints effectively. Aiming to enhance the process toward negative carbon emissions, this perspective explores the intensified membrane reactors for reducing the energy intensity of converting biogas into methanol, a versatile chemical feedstock, and renewable liquid fuel. Syngas and methanol synthesis processes, catalysts, and membranes were explored, and novel reactor designs were proposed. Introduction of selective membranes into the catalytic reaction zone to combine synthesis separation steps could enhance the system efficiency and intensify the process by recycling energy and materials, besides reducing costs and required energy for the separation process: the continuous harnessing of products shifts reactions toward desired species while recycling energy and materials enhances the process efficiency, and separating water from methanol reduces the required energy and costs of extra processes for methanol separation. The successful implementation of this technology holds significant promise for sustainable developments in producing chemicals and renewable fuel from renewable biogas and reducing methane and carbon dioxide emissions toward achieving carbon-negative technologies.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202400698","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cctc.202400698","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The modern world's major challenges, such as global warming, air pollution, and increasing energy demands, escalate the importance of sustainable development and transition toward renewables using innovative and environmentally friendly solutions, such as intensifying chemical processes, to reduce carbon footprints effectively. Aiming to enhance the process toward negative carbon emissions, this perspective explores the intensified membrane reactors for reducing the energy intensity of converting biogas into methanol, a versatile chemical feedstock, and renewable liquid fuel. Syngas and methanol synthesis processes, catalysts, and membranes were explored, and novel reactor designs were proposed. Introduction of selective membranes into the catalytic reaction zone to combine synthesis separation steps could enhance the system efficiency and intensify the process by recycling energy and materials, besides reducing costs and required energy for the separation process: the continuous harnessing of products shifts reactions toward desired species while recycling energy and materials enhances the process efficiency, and separating water from methanol reduces the required energy and costs of extra processes for methanol separation. The successful implementation of this technology holds significant promise for sustainable developments in producing chemicals and renewable fuel from renewable biogas and reducing methane and carbon dioxide emissions toward achieving carbon-negative technologies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemCatChem
ChemCatChem 化学-物理化学
CiteScore
8.10
自引率
4.40%
发文量
511
审稿时长
1.3 months
期刊介绍: With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信