Synthesis and characterization of ecosorbents and their application in waste cooking oil

IF 3.1 3区 化学 Q2 POLYMER SCIENCE
Thalita da Silva Neto, Andressa I. C. da Silva, Francisco M. Monteceli, Rennan F. S. Barbosa, Monique O. T. da Conceição, Simone F. Medeiros, Derval S. Rosa, Daniella R. Mulinari
{"title":"Synthesis and characterization of ecosorbents and their application in waste cooking oil","authors":"Thalita da Silva Neto,&nbsp;Andressa I. C. da Silva,&nbsp;Francisco M. Monteceli,&nbsp;Rennan F. S. Barbosa,&nbsp;Monique O. T. da Conceição,&nbsp;Simone F. Medeiros,&nbsp;Derval S. Rosa,&nbsp;Daniella R. Mulinari","doi":"10.1007/s00289-024-05547-9","DOIUrl":null,"url":null,"abstract":"<div><p>Globally, millions of tons of waste cooking oils (WCO) are generated yearly, and the recovery rate for manufacturing chemicals such as biodiesel is still low. Unfortunately, part of the WCO has been directly discharged into natural environments, underscoring the industrial significance of developing novel technologies for its utilization. As a possible solution to its recovery, this research proposes a new approach for Agave Americana fiber (AF) as a filler in castor oil-based polyurethane, obtaining ecosorbents and evaluating the sorption capacity of WCO. The pristine PU and PU/AFX% ecosorbents (X stands for AF content between 5 and 20 wt%.) were characterized by SEM, OM, density, FTIR, XRD, contact angle (CA), TGA, and water absorption. The inclusion of AF fillers impacted density and influenced morphological, physical–chemical, and thermal properties. Sorption capacity and efficiency were evaluated by varying the contact time and concentration in the oil/water system, and a direct influence of fiber content on sorption capacity was observed. PU/AF20% presented the highest CA and the best sorption capacity and efficiency. Response surface methodology (RSM) evaluated the optimization behavior of sorption capacity (for water and oil), emphasizing a strong dependency on sorption capacity as a function of fiber content variation. Langmuir and Freundlich isotherm models well defined the sorption mechanisms, and the Langmuir model demonstrated the best fit for PU/AF20%, exhibiting a maximum adsorption capacity of 163.93 g g-1. PU/AF20% reusability was evaluated for 21 cycles with a maximum efficiency of 74.2% for oil systems. Thus, AF is an innovative filler in castor oil-based polyurethane for discarded waste cooking oil sorption.</p></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"82 3","pages":"753 - 775"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05547-9","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Globally, millions of tons of waste cooking oils (WCO) are generated yearly, and the recovery rate for manufacturing chemicals such as biodiesel is still low. Unfortunately, part of the WCO has been directly discharged into natural environments, underscoring the industrial significance of developing novel technologies for its utilization. As a possible solution to its recovery, this research proposes a new approach for Agave Americana fiber (AF) as a filler in castor oil-based polyurethane, obtaining ecosorbents and evaluating the sorption capacity of WCO. The pristine PU and PU/AFX% ecosorbents (X stands for AF content between 5 and 20 wt%.) were characterized by SEM, OM, density, FTIR, XRD, contact angle (CA), TGA, and water absorption. The inclusion of AF fillers impacted density and influenced morphological, physical–chemical, and thermal properties. Sorption capacity and efficiency were evaluated by varying the contact time and concentration in the oil/water system, and a direct influence of fiber content on sorption capacity was observed. PU/AF20% presented the highest CA and the best sorption capacity and efficiency. Response surface methodology (RSM) evaluated the optimization behavior of sorption capacity (for water and oil), emphasizing a strong dependency on sorption capacity as a function of fiber content variation. Langmuir and Freundlich isotherm models well defined the sorption mechanisms, and the Langmuir model demonstrated the best fit for PU/AF20%, exhibiting a maximum adsorption capacity of 163.93 g g-1. PU/AF20% reusability was evaluated for 21 cycles with a maximum efficiency of 74.2% for oil systems. Thus, AF is an innovative filler in castor oil-based polyurethane for discarded waste cooking oil sorption.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Bulletin
Polymer Bulletin 化学-高分子科学
CiteScore
6.00
自引率
6.20%
发文量
0
审稿时长
5.5 months
期刊介绍: "Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad. "Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信