Theoretical Insight on the Structural, Electronic, Elastic, Optical and Vibrational Properties of Ligasi Half-Heusler Crystal for Ground State and Under Pressure
{"title":"Theoretical Insight on the Structural, Electronic, Elastic, Optical and Vibrational Properties of Ligasi Half-Heusler Crystal for Ground State and Under Pressure","authors":"Sinem Erden Gulebaglan, Emel Kilit Dogan","doi":"10.1007/s12633-024-03200-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the electronic, structural, optical, elastic and dynamic properties of LiGaSi half- Heusler crystalline were tried to be predicted for the ground state and under pressure by using density functional theory. Quantum Espresso and Abinit software programs were used while carrying out this research. While performing calculations in these package programmings, the Generalized Gradient Approximation was taken into consideration. Calculations showed that the critical pressure value for LiGaSi half-Heusler crystal is estimated to be approximately 935 kbar. It was noticed that the LiGaSi half-Heusler crystal, while a brittle material in the ground state, became an elastic material under pressure. Additionally, it was concluded that while LiGaSi half-Heusler crystal is dynamically stable in the ground state, LiGaSi half-Heusler is dynamically unstable under 935 kbar pressure. This has additionally been shown to make it more thermally conductive. It is thought that the results obtained from this study and the information obtained by interpreting the results will contribute to the literature and will be useful for future studies.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"17 2","pages":"323 - 334"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03200-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the electronic, structural, optical, elastic and dynamic properties of LiGaSi half- Heusler crystalline were tried to be predicted for the ground state and under pressure by using density functional theory. Quantum Espresso and Abinit software programs were used while carrying out this research. While performing calculations in these package programmings, the Generalized Gradient Approximation was taken into consideration. Calculations showed that the critical pressure value for LiGaSi half-Heusler crystal is estimated to be approximately 935 kbar. It was noticed that the LiGaSi half-Heusler crystal, while a brittle material in the ground state, became an elastic material under pressure. Additionally, it was concluded that while LiGaSi half-Heusler crystal is dynamically stable in the ground state, LiGaSi half-Heusler is dynamically unstable under 935 kbar pressure. This has additionally been shown to make it more thermally conductive. It is thought that the results obtained from this study and the information obtained by interpreting the results will contribute to the literature and will be useful for future studies.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.