{"title":"Tunable extraordinary optical transmission for integrated photonics","authors":"Hira Asif, Ramazan Sahin","doi":"10.1007/s00340-025-08395-1","DOIUrl":null,"url":null,"abstract":"<div><p>The propagation of light through opaque materials, served by periodic arrays of subwavelength holes, has revolutionized imaging and sensor technology with a breakthrough of extraordinary optical transmission (EOT). The enhanced optical transmission assisted by surface plasmon resonances (SPR) has become the most ingenious phenomenon in the field of light-matter interaction. Active tuning of SPR presents a new and simple way to control spectral features of the EOT signal (without the need to change the geometrical structure of the device). This provides a new possibility to integrate an active EOT device with tunable operational frequencies on a single chip of photonic integrated circuits (PIC)- a new scalable instrument in the optoelectronic industry, and quantum technology for improving subwavelength optical imaging and biomedical sensing. In this review, we discuss the fundamentals of EOT, the role of SPR, and how the active quantum plasmonic control of the EOT device makes it a feasible on-chip electro-optic programmable element for integrated photonics.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"131 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-025-08395-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The propagation of light through opaque materials, served by periodic arrays of subwavelength holes, has revolutionized imaging and sensor technology with a breakthrough of extraordinary optical transmission (EOT). The enhanced optical transmission assisted by surface plasmon resonances (SPR) has become the most ingenious phenomenon in the field of light-matter interaction. Active tuning of SPR presents a new and simple way to control spectral features of the EOT signal (without the need to change the geometrical structure of the device). This provides a new possibility to integrate an active EOT device with tunable operational frequencies on a single chip of photonic integrated circuits (PIC)- a new scalable instrument in the optoelectronic industry, and quantum technology for improving subwavelength optical imaging and biomedical sensing. In this review, we discuss the fundamentals of EOT, the role of SPR, and how the active quantum plasmonic control of the EOT device makes it a feasible on-chip electro-optic programmable element for integrated photonics.
期刊介绍:
Features publication of experimental and theoretical investigations in applied physics
Offers invited reviews in addition to regular papers
Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more
94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field.
In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.