{"title":"Enhanced Thermal Shock Resistance and Mechanical Characteristics of Microwave Sintered ZrB2-SiC-MgO Composites","authors":"Ankur Sharma, Anish Upadhyaya","doi":"10.1007/s12633-024-03209-z","DOIUrl":null,"url":null,"abstract":"<div><p>The potential to utilize ZrB<sub>2</sub> based ceramics for high-temperature space applications requires excellent thermal shock resistance. Therefore, the present study describes the use of water quenching method to determine the thermal shock resistance of microwave sintered ZrB<sub>2</sub>-25 SiC (vol. %) and ZrB<sub>2</sub>-25 SiC-2 MgO (vol. %) composites at 400 °C, 800 °C and 1200 °C. The MgO incorporation enhanced the ability of ZrB<sub>2</sub>-25 SiC (vol. %) composite to withstand thermal shock due to the higher fracture toughness and flexural strength. The crack deflection was observed as the primary toughening mechanism after thermal shock. The ZrB<sub>2</sub>-SiC-MgO composite demonstrated outstanding thermal shock resistance with a critical thermal shock temperature difference of 974.41 °C, surpassing that of ZrB<sub>2</sub>-SiC composite by 1.6 times. Post thermal shock test at 1200 °C, the maximum microhardness of 14.99 ± 1.29 GPa, maximum compression strength of 769.01 ± 36.66 MPa, maximum fracture toughness of 5.98 ± 0.39 MPa.m<sup>0.5</sup> and maximum critical energy release rate of 76.05 ± 9.89 J/m<sup>2</sup> were observed for ZrB<sub>2</sub>-25 SiC-2 MgO (vol. %) composition. The addition of MgO to ZrB<sub>2</sub>-SiC resulted in exceptional performance in microhardness, compression strength, and fracture toughness following thermal shock testing at 1200 °C. Specifically, the ZrB<sub>2</sub>-SiC-MgO composite retained 94.16%, 91.28%, and 95.52% of its pre thermal shock values for these mechanical properties, emphasizing its thermal stability and resistance to degradation under high-temperature conditions.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"17 2","pages":"449 - 463"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03209-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The potential to utilize ZrB2 based ceramics for high-temperature space applications requires excellent thermal shock resistance. Therefore, the present study describes the use of water quenching method to determine the thermal shock resistance of microwave sintered ZrB2-25 SiC (vol. %) and ZrB2-25 SiC-2 MgO (vol. %) composites at 400 °C, 800 °C and 1200 °C. The MgO incorporation enhanced the ability of ZrB2-25 SiC (vol. %) composite to withstand thermal shock due to the higher fracture toughness and flexural strength. The crack deflection was observed as the primary toughening mechanism after thermal shock. The ZrB2-SiC-MgO composite demonstrated outstanding thermal shock resistance with a critical thermal shock temperature difference of 974.41 °C, surpassing that of ZrB2-SiC composite by 1.6 times. Post thermal shock test at 1200 °C, the maximum microhardness of 14.99 ± 1.29 GPa, maximum compression strength of 769.01 ± 36.66 MPa, maximum fracture toughness of 5.98 ± 0.39 MPa.m0.5 and maximum critical energy release rate of 76.05 ± 9.89 J/m2 were observed for ZrB2-25 SiC-2 MgO (vol. %) composition. The addition of MgO to ZrB2-SiC resulted in exceptional performance in microhardness, compression strength, and fracture toughness following thermal shock testing at 1200 °C. Specifically, the ZrB2-SiC-MgO composite retained 94.16%, 91.28%, and 95.52% of its pre thermal shock values for these mechanical properties, emphasizing its thermal stability and resistance to degradation under high-temperature conditions.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.