Soluble salts significantly influence the freezing characteristic parameters of frozen soil. Previous studies have either insufficiently addressed the effect of sodium sulfate on matric suction or not comprehensively revealed the mechanism by which temperature affects matric suction at freezing temperature. In this study, the moisture and suction sensors were used to quantify the freezing temperature (FT), unfrozen water content (UWC), and matric suction (MS) of Ili loess with varying soluble salt contents. The impact of soluble salt content on three freezing characteristic parameters were investigated with the underlying mechanisms revealed. The results indicated that there was an initial decrease in both freezing and supercooling temperatures as the soluble salt content increased. Beyond a soluble salt content of 14 g/kg, an increase in both the freezing and supercooling temperatures was observed. Specimens with different soluble salt contents exhibited distinct UWC, which could be categorized into three stages based on temperature. A crystal precipitation stage was observed beyond the soluble salt content of 14 g/kg. Moreover, the proposed fitting model for UWC by incorporating the soluble salt content into the Gardner model demonstrated high accuracy. The MS can also be divided into three stages with temperature. Notably, specimens with soluble salt contents of 20 and 26 g/kg exhibited nonlinear increases in MS at temperatures of 5 °C and 10 °C due to crystal precipitation. Furthermore, theoretical calculations indicated the complete precipitation of sodium sulfate during the positive temperature stage.